File size: 5,922 Bytes
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os.path as osp
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset
from loguru import logger

from src.utils.dataset import read_megadepth_gray, read_megadepth_depth


class MegaDepthDataset(Dataset):
    def __init__(self,
                 root_dir,
                 npz_path,
                 mode='train',
                 min_overlap_score=0.4,
                 img_resize=None,
                 df=None,
                 img_padding=False,
                 depth_padding=False,
                 augment_fn=None,
                 **kwargs):
        """
        Manage one scene(npz_path) of MegaDepth dataset.
        
        Args:
            root_dir (str): megadepth root directory that has `phoenix`.
            npz_path (str): {scene_id}.npz path. This contains image pair information of a scene.
            mode (str): options are ['train', 'val', 'test']
            min_overlap_score (float): how much a pair should have in common. In range of [0, 1]. Set to 0 when testing.
            img_resize (int, optional): the longer edge of resized images. None for no resize. 640 is recommended.
                                        This is useful during training with batches and testing with memory intensive algorithms.
            df (int, optional): image size division factor. NOTE: this will change the final image size after img_resize.
            img_padding (bool): If set to 'True', zero-pad the image to squared size. This is useful during training.
            depth_padding (bool): If set to 'True', zero-pad depthmap to (2000, 2000). This is useful during training.
            augment_fn (callable, optional): augments images with pre-defined visual effects.
        """
        super().__init__()
        self.root_dir = root_dir
        self.mode = mode
        self.scene_id = npz_path.split('.')[0]

        # prepare scene_info and pair_info
        if mode == 'test' and min_overlap_score != 0:
            logger.warning("You are using `min_overlap_score`!=0 in test mode. Set to 0.")
            min_overlap_score = 0
        self.scene_info = np.load(npz_path, allow_pickle=True)
        self.pair_infos = self.scene_info['pair_infos'].copy()
        del self.scene_info['pair_infos']
        self.pair_infos = [pair_info for pair_info in self.pair_infos if pair_info[1] > min_overlap_score]

        # parameters for image resizing, padding and depthmap padding
        if mode == 'train':
            assert img_resize is not None and img_padding and depth_padding
        self.img_resize = img_resize
        self.df = df
        self.img_padding = img_padding
        self.depth_max_size = 2000 if depth_padding else None  # the upperbound of depthmaps size in megadepth.

        # for training LoFTR
        self.augment_fn = augment_fn if mode == 'train' else None
        self.coarse_scale = getattr(kwargs, 'coarse_scale', 0.125)

    def __len__(self):
        return len(self.pair_infos)

    def __getitem__(self, idx):
        (idx0, idx1), overlap_score, central_matches = self.pair_infos[idx]

        # read grayscale image and mask. (1, h, w) and (h, w)
        img_name0 = osp.join(self.root_dir, self.scene_info['image_paths'][idx0])
        img_name1 = osp.join(self.root_dir, self.scene_info['image_paths'][idx1])
        
        # TODO: Support augmentation & handle seeds for each worker correctly.
        image0, mask0, scale0 = read_megadepth_gray(
            img_name0, self.img_resize, self.df, self.img_padding, None)
            # np.random.choice([self.augment_fn, None], p=[0.5, 0.5]))
        image1, mask1, scale1 = read_megadepth_gray(
            img_name1, self.img_resize, self.df, self.img_padding, None)
            # np.random.choice([self.augment_fn, None], p=[0.5, 0.5]))

        # read depth. shape: (h, w)
        if self.mode in ['train', 'val']:
            depth0 = read_megadepth_depth(
                osp.join(self.root_dir, self.scene_info['depth_paths'][idx0]), pad_to=self.depth_max_size)
            depth1 = read_megadepth_depth(
                osp.join(self.root_dir, self.scene_info['depth_paths'][idx1]), pad_to=self.depth_max_size)
        else:
            depth0 = depth1 = torch.tensor([])

        # read intrinsics of original size
        K_0 = torch.tensor(self.scene_info['intrinsics'][idx0].copy(), dtype=torch.float).reshape(3, 3)
        K_1 = torch.tensor(self.scene_info['intrinsics'][idx1].copy(), dtype=torch.float).reshape(3, 3)

        # read and compute relative poses
        T0 = self.scene_info['poses'][idx0]
        T1 = self.scene_info['poses'][idx1]
        T_0to1 = torch.tensor(np.matmul(T1, np.linalg.inv(T0)), dtype=torch.float)[:4, :4]  # (4, 4)
        T_1to0 = T_0to1.inverse()

        data = {
            'image0': image0,  # (1, h, w)
            'depth0': depth0,  # (h, w)
            'image1': image1,
            'depth1': depth1,
            'T_0to1': T_0to1,  # (4, 4)
            'T_1to0': T_1to0,
            'K0': K_0,  # (3, 3)
            'K1': K_1,
            'scale0': scale0,  # [scale_w, scale_h]
            'scale1': scale1,
            'dataset_name': 'MegaDepth',
            'scene_id': self.scene_id,
            'pair_id': idx,
            'pair_names': (self.scene_info['image_paths'][idx0], self.scene_info['image_paths'][idx1]),
        }

        # for LoFTR training
        if mask0 is not None:  # img_padding is True
            if self.coarse_scale:
                [ts_mask_0, ts_mask_1] = F.interpolate(torch.stack([mask0, mask1], dim=0)[None].float(),
                                                       scale_factor=self.coarse_scale,
                                                       mode='nearest',
                                                       recompute_scale_factor=False)[0].bool()
            data.update({'mask0': ts_mask_0, 'mask1': ts_mask_1})

        return data