File size: 11,044 Bytes
a80d6bb
 
 
 
 
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
 
 
 
 
a80d6bb
 
 
 
c74a070
a80d6bb
 
c74a070
 
a80d6bb
 
c74a070
 
a80d6bb
c74a070
 
 
 
 
 
a80d6bb
 
 
 
 
c74a070
 
 
 
 
a80d6bb
 
c74a070
 
a80d6bb
c74a070
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
 
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
a80d6bb
 
 
 
c74a070
 
 
a80d6bb
 
c74a070
a80d6bb
c74a070
 
 
a80d6bb
c74a070
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
c74a070
a80d6bb
 
 
 
 
 
c74a070
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
c74a070
a80d6bb
 
c74a070
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
a80d6bb
 
 
 
 
 
c74a070
a80d6bb
c74a070
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
a80d6bb
 
 
c74a070
a80d6bb
 
 
 
 
 
 
c74a070
 
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
c74a070
 
 
a80d6bb
 
 
 
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import torch
import torch.nn.functional as F

from .geom import rnd_sample, interpolate, get_dist_mat


def make_detector_loss(
    pos0,
    pos1,
    dense_feat_map0,
    dense_feat_map1,
    score_map0,
    score_map1,
    batch_size,
    num_corr,
    loss_type,
    config,
):
    joint_loss = 0.0
    accuracy = 0.0
    all_valid_pos0 = []
    all_valid_pos1 = []
    all_valid_match = []
    for i in range(batch_size):
        # random sample
        valid_pos0, valid_pos1 = rnd_sample([pos0[i], pos1[i]], num_corr)
        valid_num = valid_pos0.shape[0]

        valid_feat0 = interpolate(valid_pos0 / 4, dense_feat_map0[i])
        valid_feat1 = interpolate(valid_pos1 / 4, dense_feat_map1[i])

        valid_feat0 = F.normalize(valid_feat0, p=2, dim=-1)
        valid_feat1 = F.normalize(valid_feat1, p=2, dim=-1)

        valid_score0 = interpolate(
            valid_pos0, torch.squeeze(score_map0[i], dim=-1), nd=False
        )
        valid_score1 = interpolate(
            valid_pos1, torch.squeeze(score_map1[i], dim=-1), nd=False
        )

        if config["network"]["det"]["corr_weight"]:
            corr_weight = valid_score0 * valid_score1
        else:
            corr_weight = None

        safe_radius = config["network"]["det"]["safe_radius"]
        if safe_radius > 0:
            radius_mask_row = get_dist_mat(
                valid_pos1, valid_pos1, "euclidean_dist_no_norm"
            )
            radius_mask_row = torch.le(radius_mask_row, safe_radius)
            radius_mask_col = get_dist_mat(
                valid_pos0, valid_pos0, "euclidean_dist_no_norm"
            )
            radius_mask_col = torch.le(radius_mask_col, safe_radius)
            radius_mask_row = radius_mask_row.float() - torch.eye(
                valid_num, device=radius_mask_row.device
            )
            radius_mask_col = radius_mask_col.float() - torch.eye(
                valid_num, device=radius_mask_col.device
            )
        else:
            radius_mask_row = None
            radius_mask_col = None

        if valid_num < 32:
            si_loss, si_accuracy, matched_mask = (
                0.0,
                1.0,
                torch.zeros((1, valid_num)).bool(),
            )
        else:
            si_loss, si_accuracy, matched_mask = make_structured_loss(
                torch.unsqueeze(valid_feat0, 0),
                torch.unsqueeze(valid_feat1, 0),
                loss_type=loss_type,
                radius_mask_row=radius_mask_row,
                radius_mask_col=radius_mask_col,
                corr_weight=torch.unsqueeze(corr_weight, 0)
                if corr_weight is not None
                else None,
            )

        joint_loss += si_loss / batch_size
        accuracy += si_accuracy / batch_size
        all_valid_match.append(torch.squeeze(matched_mask, dim=0))
        all_valid_pos0.append(valid_pos0)
        all_valid_pos1.append(valid_pos1)

    return joint_loss, accuracy


def make_structured_loss(
    feat_anc,
    feat_pos,
    loss_type="RATIO",
    inlier_mask=None,
    radius_mask_row=None,
    radius_mask_col=None,
    corr_weight=None,
    dist_mat=None,
):
    """
    Structured loss construction.
    Args:
        feat_anc, feat_pos: Feature matrix.
        loss_type: Loss type.
        inlier_mask:
    Returns:

    """
    batch_size = feat_anc.shape[0]
    num_corr = feat_anc.shape[1]
    if inlier_mask is None:
        inlier_mask = torch.ones((batch_size, num_corr), device=feat_anc.device).bool()
    inlier_num = torch.count_nonzero(inlier_mask.float(), dim=-1)

    if loss_type == "L2NET" or loss_type == "CIRCLE":
        dist_type = "cosine_dist"
    elif loss_type.find("HARD") >= 0:
        dist_type = "euclidean_dist"
    else:
        raise NotImplementedError()

    if dist_mat is None:
        dist_mat = get_dist_mat(
            feat_anc.squeeze(0), feat_pos.squeeze(0), dist_type
        ).unsqueeze(0)
    pos_vec = dist_mat[0].diag().unsqueeze(0)

    if loss_type.find("HARD") >= 0:
        neg_margin = 1
        dist_mat_without_min_on_diag = dist_mat + 10 * torch.unsqueeze(
            torch.eye(num_corr, device=dist_mat.device), dim=0
        )
        mask = torch.le(dist_mat_without_min_on_diag, 0.008).float()
        dist_mat_without_min_on_diag += mask * 10

        if radius_mask_row is not None:
            hard_neg_dist_row = dist_mat_without_min_on_diag + 10 * radius_mask_row
        else:
            hard_neg_dist_row = dist_mat_without_min_on_diag
        if radius_mask_col is not None:
            hard_neg_dist_col = dist_mat_without_min_on_diag + 10 * radius_mask_col
        else:
            hard_neg_dist_col = dist_mat_without_min_on_diag

        hard_neg_dist_row = torch.min(hard_neg_dist_row, dim=-1)[0]
        hard_neg_dist_col = torch.min(hard_neg_dist_col, dim=-2)[0]

        if loss_type == "HARD_TRIPLET":
            loss_row = torch.clamp(neg_margin + pos_vec - hard_neg_dist_row, min=0)
            loss_col = torch.clamp(neg_margin + pos_vec - hard_neg_dist_col, min=0)
        elif loss_type == "HARD_CONTRASTIVE":
            pos_margin = 0.2
            pos_loss = torch.clamp(pos_vec - pos_margin, min=0)
            loss_row = pos_loss + torch.clamp(neg_margin - hard_neg_dist_row, min=0)
            loss_col = pos_loss + torch.clamp(neg_margin - hard_neg_dist_col, min=0)
        else:
            raise NotImplementedError()

    elif loss_type == "CIRCLE":
        log_scale = 512
        m = 0.1
        neg_mask_row = torch.unsqueeze(torch.eye(num_corr, device=feat_anc.device), 0)
        if radius_mask_row is not None:
            neg_mask_row += radius_mask_row
        neg_mask_col = torch.unsqueeze(torch.eye(num_corr, device=feat_anc.device), 0)
        if radius_mask_col is not None:
            neg_mask_col += radius_mask_col

        pos_margin = 1 - m
        neg_margin = m
        pos_optimal = 1 + m
        neg_optimal = -m

        neg_mat_row = dist_mat - 128 * neg_mask_row
        neg_mat_col = dist_mat - 128 * neg_mask_col

        lse_positive = torch.logsumexp(
            -log_scale
            * (pos_vec[..., None] - pos_margin)
            * torch.clamp(pos_optimal - pos_vec[..., None], min=0).detach(),
            dim=-1,
        )

        lse_negative_row = torch.logsumexp(
            log_scale
            * (neg_mat_row - neg_margin)
            * torch.clamp(neg_mat_row - neg_optimal, min=0).detach(),
            dim=-1,
        )

        lse_negative_col = torch.logsumexp(
            log_scale
            * (neg_mat_col - neg_margin)
            * torch.clamp(neg_mat_col - neg_optimal, min=0).detach(),
            dim=-2,
        )

        loss_row = F.softplus(lse_positive + lse_negative_row) / log_scale
        loss_col = F.softplus(lse_positive + lse_negative_col) / log_scale

    else:
        raise NotImplementedError()

    if dist_type == "cosine_dist":
        err_row = dist_mat - torch.unsqueeze(pos_vec, -1)
        err_col = dist_mat - torch.unsqueeze(pos_vec, -2)
    elif dist_type == "euclidean_dist" or dist_type == "euclidean_dist_no_norm":
        err_row = torch.unsqueeze(pos_vec, -1) - dist_mat
        err_col = torch.unsqueeze(pos_vec, -2) - dist_mat
    else:
        raise NotImplementedError()
    if radius_mask_row is not None:
        err_row = err_row - 10 * radius_mask_row
    if radius_mask_col is not None:
        err_col = err_col - 10 * radius_mask_col
    err_row = torch.sum(torch.clamp(err_row, min=0), dim=-1)
    err_col = torch.sum(torch.clamp(err_col, min=0), dim=-2)

    loss = 0
    accuracy = 0

    tot_loss = (loss_row + loss_col) / 2
    if corr_weight is not None:
        tot_loss = tot_loss * corr_weight

    for i in range(batch_size):
        if corr_weight is not None:
            loss += torch.sum(tot_loss[i][inlier_mask[i]]) / (
                torch.sum(corr_weight[i][inlier_mask[i]]) + 1e-6
            )
        else:
            loss += torch.mean(tot_loss[i][inlier_mask[i]])
        cnt_err_row = torch.count_nonzero(err_row[i][inlier_mask[i]]).float()
        cnt_err_col = torch.count_nonzero(err_col[i][inlier_mask[i]]).float()
        tot_err = cnt_err_row + cnt_err_col
        if inlier_num[i] != 0:
            accuracy += 1.0 - tot_err / inlier_num[i] / batch_size / 2.0
        else:
            accuracy += 1.0

    matched_mask = torch.logical_and(torch.eq(err_row, 0), torch.eq(err_col, 0))
    matched_mask = torch.logical_and(matched_mask, inlier_mask)

    loss /= batch_size
    accuracy /= batch_size

    return loss, accuracy, matched_mask


# for the neighborhood areas of keypoints extracted from normal image, the score from noise_score_map should be close
# for the rest, the noise image's score should less than normal image
# input: score_map [batch_size, H, W, 1]; indices [2, k, 2]
# output: loss [scalar]
def make_noise_score_map_loss(
    score_map, noise_score_map, indices, batch_size, thld=0.0
):
    H, W = score_map.shape[1:3]
    loss = 0
    for i in range(batch_size):
        kpts_coords = indices[i].T  # (2, num_kpts)
        mask = torch.zeros([H, W], device=score_map.device)
        mask[kpts_coords.cpu().numpy()] = 1

        # using 3x3 kernel to put kpts' neightborhood area into the mask
        kernel = torch.ones([1, 1, 3, 3], device=score_map.device)
        mask = F.conv2d(mask.unsqueeze(0).unsqueeze(0), kernel, padding=1)[0, 0] > 0

        loss1 = torch.sum(
            torch.abs(score_map[i] - noise_score_map[i]).squeeze() * mask
        ) / torch.sum(mask)
        loss2 = torch.sum(
            torch.clamp(noise_score_map[i] - score_map[i] - thld, min=0).squeeze()
            * torch.logical_not(mask)
        ) / (H * W - torch.sum(mask))

        loss += loss1
        loss += loss2

        if i == 0:
            first_mask = mask

    return loss, first_mask


def make_noise_score_map_loss_labelmap(
    score_map, noise_score_map, labelmap, batch_size, thld=0.0
):
    H, W = score_map.shape[1:3]
    loss = 0
    for i in range(batch_size):
        # using 3x3 kernel to put kpts' neightborhood area into the mask
        kernel = torch.ones([1, 1, 3, 3], device=score_map.device)
        mask = (
            F.conv2d(
                labelmap[i].unsqueeze(0).to(score_map.device).float(), kernel, padding=1
            )[0, 0]
            > 0
        )

        loss1 = torch.sum(
            torch.abs(score_map[i] - noise_score_map[i]).squeeze() * mask
        ) / torch.sum(mask)
        loss2 = torch.sum(
            torch.clamp(noise_score_map[i] - score_map[i] - thld, min=0).squeeze()
            * torch.logical_not(mask)
        ) / (H * W - torch.sum(mask))

        loss += loss1
        loss += loss2

        if i == 0:
            first_mask = mask

    return loss, first_mask


def make_score_map_peakiness_loss(score_map, scores, batch_size):
    H, W = score_map.shape[1:3]
    loss = 0

    for i in range(batch_size):
        loss += torch.mean(scores[i]) - torch.mean(score_map[i])

    loss /= batch_size
    return 1 - loss