File size: 6,577 Bytes
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import numpy as np


def batch_episym(x1, x2, F):
    batch_size, num_pts = x1.shape[0], x1.shape[1]
    x1 = torch.cat([x1, x1.new_ones(batch_size, num_pts,1)], dim=-1).reshape(batch_size, num_pts,3,1)
    x2 = torch.cat([x2, x2.new_ones(batch_size, num_pts,1)], dim=-1).reshape(batch_size, num_pts,3,1)
    F = F.reshape(-1,1,3,3).repeat(1,num_pts,1,1)
    x2Fx1 = torch.matmul(x2.transpose(2,3), torch.matmul(F, x1)).reshape(batch_size,num_pts)
    Fx1 = torch.matmul(F,x1).reshape(batch_size,num_pts,3)
    Ftx2 = torch.matmul(F.transpose(2,3),x2).reshape(batch_size,num_pts,3)
    ys = (x2Fx1**2 * (
            1.0 / (Fx1[:, :, 0]**2 + Fx1[:, :, 1]**2 + 1e-15) +
            1.0 / (Ftx2[:, :, 0]**2 + Ftx2[:, :, 1]**2 + 1e-15))).sqrt()
    return ys
    

def CELoss(seed_x1,seed_x2,e,confidence,inlier_th,batch_mask=1):
    #seed_x: b*k*2
    ys=batch_episym(seed_x1,seed_x2,e)
    mask_pos,mask_neg=(ys<=inlier_th).float(),(ys>inlier_th).float()
    num_pos,num_neg=torch.relu(torch.sum(mask_pos, dim=1) - 1.0) + 1.0,torch.relu(torch.sum(mask_neg, dim=1) - 1.0) + 1.0
    loss_pos,loss_neg=-torch.log(abs(confidence) + 1e-8)*mask_pos,-torch.log(abs(1-confidence)+1e-8)*mask_neg
    classif_loss = torch.mean(loss_pos * 0.5 / num_pos.unsqueeze(-1) + loss_neg * 0.5 / num_neg.unsqueeze(-1),dim=-1)
    classif_loss =classif_loss*batch_mask
    classif_loss=classif_loss.mean()
    precision = torch.mean(
        torch.sum((confidence > 0.5).type(confidence.type()) * mask_pos, dim=1) /
        (torch.sum((confidence > 0.5).type(confidence.type()), dim=1)+1e-8)
    )
    recall = torch.mean(
        torch.sum((confidence > 0.5).type(confidence.type()) * mask_pos, dim=1) /
        num_pos
    )
    return classif_loss,precision,recall


def CorrLoss(desc_mat,batch_num_corr,batch_num_incorr1,batch_num_incorr2):
    total_loss_corr,total_loss_incorr=0,0
    total_acc_corr,total_acc_incorr=0,0
    batch_size = desc_mat.shape[0]
    log_p=torch.log(abs(desc_mat)+1e-8)

    for i in range(batch_size):
        cur_log_p=log_p[i]
        num_corr=batch_num_corr[i]
        num_incorr1,num_incorr2=batch_num_incorr1[i],batch_num_incorr2[i]
     
        #loss and acc
        loss_corr = -torch.diag(cur_log_p)[:num_corr].mean()
        loss_incorr=(-cur_log_p[num_corr:num_corr+num_incorr1,-1].mean()-cur_log_p[-1,num_corr:num_corr+num_incorr2].mean())/2

        value_row, row_index = torch.max(desc_mat[i,:-1,:-1], dim=-1)
        value_col, col_index = torch.max(desc_mat[i,:-1,:-1], dim=-2)
        acc_incorr=((value_row[num_corr:num_corr+num_incorr1]<0.2).float().mean()+
                    (value_col[num_corr:num_corr+num_incorr2]<0.2).float().mean())/2

        acc_row_mask = row_index[:num_corr] == torch.arange(num_corr).cuda()
        acc_col_mask = col_index[:num_corr] == torch.arange(num_corr).cuda()
        acc = (acc_col_mask & acc_row_mask).float().mean()
     
        total_loss_corr+=loss_corr
        total_loss_incorr+=loss_incorr
        total_acc_corr += acc
        total_acc_incorr+=acc_incorr

    total_acc_corr/=batch_size
    total_acc_incorr/=batch_size
    total_loss_corr/=batch_size
    total_loss_incorr/=batch_size
    return total_loss_corr,total_loss_incorr,total_acc_corr,total_acc_incorr


class SGMLoss:
    def __init__(self,config,model_config):
        self.config=config
        self.model_config=model_config

    def run(self,data,result):
        loss_corr,loss_incorr,acc_corr,acc_incorr=CorrLoss(result['p'],data['num_corr'],data['num_incorr1'],data['num_incorr2'])
        loss_mid_corr_tower,loss_mid_incorr_tower,acc_mid_tower=[],[],[]
        
        #mid loss
        for i in range(len(result['mid_p'])):
            mid_p=result['mid_p'][i]
            loss_mid_corr,loss_mid_incorr,mid_acc_corr,mid_acc_incorr=CorrLoss(mid_p,data['num_corr'],data['num_incorr1'],data['num_incorr2'])
            loss_mid_corr_tower.append(loss_mid_corr),loss_mid_incorr_tower.append(loss_mid_incorr),acc_mid_tower.append(mid_acc_corr)
        if len(result['mid_p']) != 0:
            loss_mid_corr_tower,loss_mid_incorr_tower, acc_mid_tower = torch.stack(loss_mid_corr_tower), torch.stack(loss_mid_incorr_tower), torch.stack(acc_mid_tower)
        else:
            loss_mid_corr_tower,loss_mid_incorr_tower, acc_mid_tower= torch.zeros(1).cuda(), torch.zeros(1).cuda(),torch.zeros(1).cuda()
  
        #seed confidence loss
        classif_loss_tower,classif_precision_tower,classif_recall_tower=[],[],[]
        for layer in range(len(result['seed_conf'])):
            confidence=result['seed_conf'][layer]
            seed_index=result['seed_index'][(np.asarray(self.model_config.seedlayer)<=layer).nonzero()[0][-1]]
            seed_x1,seed_x2=data['x1'].gather(dim=1, index=seed_index[:,:,0,None].expand(-1, -1,2)),\
                            data['x2'].gather(dim=1, index=seed_index[:,:,1,None].expand(-1, -1,2))
            classif_loss,classif_precision,classif_recall=CELoss(seed_x1,seed_x2,data['e_gt'],confidence,self.config.inlier_th)
            classif_loss_tower.append(classif_loss), classif_precision_tower.append(classif_precision), classif_recall_tower.append(classif_recall)
        classif_loss, classif_precision_tower, classif_recall_tower=torch.stack(classif_loss_tower).mean(),torch.stack(classif_precision_tower), \
                                                                    torch.stack(classif_recall_tower)
       
            
        classif_loss*=self.config.seed_loss_weight
        loss_mid_corr_tower*=self.config.mid_loss_weight
        loss_mid_incorr_tower*=self.config.mid_loss_weight
        total_loss=loss_corr+loss_incorr+classif_loss+loss_mid_corr_tower.sum()+loss_mid_incorr_tower.sum()

        return {'loss_corr':loss_corr,'loss_incorr':loss_incorr,'acc_corr':acc_corr,'acc_incorr':acc_incorr,'loss_seed_conf':classif_loss,
                'pre_seed_conf':classif_precision_tower,'recall_seed_conf':classif_recall_tower,'loss_corr_mid':loss_mid_corr_tower,
                'loss_incorr_mid':loss_mid_incorr_tower,'mid_acc_corr':acc_mid_tower,'total_loss':total_loss}
        
class SGLoss:
    def __init__(self,config,model_config):
        self.config=config
        self.model_config=model_config
        
    def run(self,data,result):
        loss_corr,loss_incorr,acc_corr,acc_incorr=CorrLoss(result['p'],data['num_corr'],data['num_incorr1'],data['num_incorr2'])
        total_loss=loss_corr+loss_incorr
        return {'loss_corr':loss_corr,'loss_incorr':loss_incorr,'acc_corr':acc_corr,'acc_incorr':acc_incorr,'total_loss':total_loss}