Spaces:
Running
Running
File size: 24,700 Bytes
63f3cf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
# %BANNER_BEGIN%
# ---------------------------------------------------------------------
# %COPYRIGHT_BEGIN%
#
# Magic Leap, Inc. ("COMPANY") CONFIDENTIAL
#
# Unpublished Copyright (c) 2020
# Magic Leap, Inc., All Rights Reserved.
#
# NOTICE: All information contained herein is, and remains the property
# of COMPANY. The intellectual and technical concepts contained herein
# are proprietary to COMPANY and may be covered by U.S. and Foreign
# Patents, patents in process, and are protected by trade secret or
# copyright law. Dissemination of this information or reproduction of
# this material is strictly forbidden unless prior written permission is
# obtained from COMPANY. Access to the source code contained herein is
# hereby forbidden to anyone except current COMPANY employees, managers
# or contractors who have executed Confidentiality and Non-disclosure
# agreements explicitly covering such access.
#
# The copyright notice above does not evidence any actual or intended
# publication or disclosure of this source code, which includes
# information that is confidential and/or proprietary, and is a trade
# secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION,
# PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS
# SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS
# STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND
# INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE
# CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS
# TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
# USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART.
#
# %COPYRIGHT_END%
# ----------------------------------------------------------------------
# %AUTHORS_BEGIN%
#
# Originating Authors: Paul-Edouard Sarlin
#
# %AUTHORS_END%
# --------------------------------------------------------------------*/
# %BANNER_END%
from pathlib import Path
import torch
from torch import nn
import numpy as np
import cv2
import torch.nn.functional as F
def simple_nms(scores, nms_radius: int):
""" Fast Non-maximum suppression to remove nearby points """
assert (nms_radius >= 0)
def max_pool(x):
return torch.nn.functional.max_pool2d(
x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius)
zeros = torch.zeros_like(scores)
max_mask = scores == max_pool(scores)
for _ in range(2):
supp_mask = max_pool(max_mask.float()) > 0
supp_scores = torch.where(supp_mask, zeros, scores)
new_max_mask = supp_scores == max_pool(supp_scores)
max_mask = max_mask | (new_max_mask & (~supp_mask))
return torch.where(max_mask, scores, zeros)
def remove_borders(keypoints, scores, border: int, height: int, width: int):
""" Removes keypoints too close to the border """
mask_h = (keypoints[:, 0] >= border) & (keypoints[:, 0] < (height - border))
mask_w = (keypoints[:, 1] >= border) & (keypoints[:, 1] < (width - border))
mask = mask_h & mask_w
return keypoints[mask], scores[mask]
def top_k_keypoints(keypoints, scores, k: int):
if k >= len(keypoints):
return keypoints, scores
scores, indices = torch.topk(scores, k, dim=0)
return keypoints[indices], scores
def sample_descriptors(keypoints, descriptors, s: int = 8):
""" Interpolate descriptors at keypoint locations """
b, c, h, w = descriptors.shape
keypoints = keypoints - s / 2 + 0.5
keypoints /= torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)],
).to(keypoints)[None]
keypoints = keypoints * 2 - 1 # normalize to (-1, 1)
args = {'align_corners': True} if int(torch.__version__[2]) > 2 else {}
descriptors = torch.nn.functional.grid_sample(
descriptors, keypoints.view(b, 1, -1, 2), mode='bilinear', **args)
descriptors = torch.nn.functional.normalize(
descriptors.reshape(b, c, -1), p=2, dim=1)
return descriptors
class SuperPoint(nn.Module):
"""SuperPoint Convolutional Detector and Descriptor
SuperPoint: Self-Supervised Interest Point Detection and
Description. Daniel DeTone, Tomasz Malisiewicz, and Andrew
Rabinovich. In CVPRW, 2019. https://arxiv.org/abs/1712.07629
"""
default_config = {
'descriptor_dim': 256,
'nms_radius': 3,
'keypoint_threshold': 0.001,
'max_keypoints': -1,
'min_keypoints': 32,
'remove_borders': 4,
}
def __init__(self, config):
super().__init__()
self.config = {**self.default_config, **config}
self.relu = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
c1, c2, c3, c4, c5 = 64, 64, 128, 128, 256
self.conv1a = nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1)
self.conv1b = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1) # 64
self.conv2a = nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1)
self.conv2b = nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1) # 64
self.conv3a = nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1)
self.conv3b = nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1) # 128
self.conv4a = nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1)
self.conv4b = nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1) # 128
self.convPa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1) # 256
self.convPb = nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0)
self.convDa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1) # 256
self.convDb = nn.Conv2d(
c5, self.config['descriptor_dim'],
kernel_size=1, stride=1, padding=0)
# path = Path(__file__).parent / 'weights/superpoint_v1.pth'
path = config['weight_path']
self.load_state_dict(torch.load(str(path), map_location='cpu'), strict=True)
mk = self.config['max_keypoints']
if mk == 0 or mk < -1:
raise ValueError('\"max_keypoints\" must be positive or \"-1\"')
print('Loaded SuperPoint model')
def extract_global(self, data):
# Shared Encoder
x0 = self.relu(self.conv1a(data['image']))
x0 = self.relu(self.conv1b(x0))
x0 = self.pool(x0)
x1 = self.relu(self.conv2a(x0))
x1 = self.relu(self.conv2b(x1))
x1 = self.pool(x1)
x2 = self.relu(self.conv3a(x1))
x2 = self.relu(self.conv3b(x2))
x2 = self.pool(x2)
x3 = self.relu(self.conv4a(x2))
x3 = self.relu(self.conv4b(x3))
x4 = self.relu(self.convDa(x3))
# print('ex_g: ', x0.shape, x1.shape, x2.shape, x3.shape, x4.shape)
return [x0, x1, x2, x3, x4]
def extract_local_global(self, data):
# Shared Encoder
b, ic, ih, iw = data['image'].shape
x0 = self.relu(self.conv1a(data['image']))
x0 = self.relu(self.conv1b(x0))
x0 = self.pool(x0)
x1 = self.relu(self.conv2a(x0))
x1 = self.relu(self.conv2b(x1))
x1 = self.pool(x1)
x2 = self.relu(self.conv3a(x1))
x2 = self.relu(self.conv3b(x2))
x2 = self.pool(x2)
x3 = self.relu(self.conv4a(x2))
x3 = self.relu(self.conv4b(x3))
# Compute the dense keypoint scores
cPa = self.relu(self.convPa(x3))
score = self.convPb(cPa)
score = torch.nn.functional.softmax(score, 1)[:, :-1]
# print(scores.shape)
b, _, h, w = score.shape
score = score.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8)
score = score.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8)
score = torch.nn.functional.interpolate(score.unsqueeze(1), size=(ih, iw), align_corners=True,
mode='bilinear')
score = score.squeeze(1)
# extract kpts
nms_scores = simple_nms(scores=score, nms_radius=self.config['nms_radius'])
keypoints = [
torch.nonzero(s >= self.config['keypoint_threshold'])
for s in nms_scores]
scores = [s[tuple(k.t())] for s, k in zip(nms_scores, keypoints)]
if len(scores[0]) <= self.config['min_keypoints']:
keypoints = [
torch.nonzero(s >= self.config['keypoint_threshold'] * 0.5)
for s in nms_scores]
scores = [s[tuple(k.t())] for s, k in zip(nms_scores, keypoints)]
# Discard keypoints near the image borders
keypoints, scores = list(zip(*[
remove_borders(k, s, self.config['remove_borders'], ih, iw)
for k, s in zip(keypoints, scores)]))
# Keep the k keypoints with the highest score
if self.config['max_keypoints'] >= 0:
keypoints, scores = list(zip(*[
top_k_keypoints(k, s, self.config['max_keypoints'])
for k, s in zip(keypoints, scores)]))
# Convert (h, w) to (x, y)
keypoints = [torch.flip(k, [1]).float() for k in keypoints]
# Compute the dense descriptors
cDa = self.relu(self.convDa(x3))
desc_map = self.convDb(cDa)
desc_map = torch.nn.functional.normalize(desc_map, p=2, dim=1)
descriptors = [sample_descriptors(k[None], d[None], 8)[0]
for k, d in zip(keypoints, desc_map)]
return {
'score_map': score,
'desc_map': desc_map,
'mid_features': cDa, # 256
'global_descriptors': [x0, x1, x2, x3, cDa],
'keypoints': keypoints,
'scores': scores,
'descriptors': descriptors,
}
def sample(self, score_map, semi_descs, kpts, s=8, norm_desc=True):
# print('sample: ', score_map.shape, semi_descs.shape, kpts.shape)
b, c, h, w = semi_descs.shape
norm_kpts = kpts - s / 2 + 0.5
norm_kpts = norm_kpts / torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)],
).to(norm_kpts)[None]
norm_kpts = norm_kpts * 2 - 1
# args = {'align_corners': True} if int(torch.__version__[2]) > 2 else {}
descriptors = torch.nn.functional.grid_sample(
semi_descs, norm_kpts.view(b, 1, -1, 2), mode='bilinear', align_corners=True)
if norm_desc:
descriptors = torch.nn.functional.normalize(
descriptors.reshape(b, c, -1), p=2, dim=1)
else:
descriptors = descriptors.reshape(b, c, -1)
# print('max: ', torch.min(kpts[:, 1].long()), torch.max(kpts[:, 1].long()), torch.min(kpts[:, 0].long()),
# torch.max(kpts[:, 0].long()))
scores = score_map[0, kpts[:, 1].long(), kpts[:, 0].long()]
return scores, descriptors.squeeze(0)
def extract(self, data):
""" Compute keypoints, scores, descriptors for image """
# Shared Encoder
x = self.relu(self.conv1a(data['image']))
x = self.relu(self.conv1b(x))
x = self.pool(x)
x = self.relu(self.conv2a(x))
x = self.relu(self.conv2b(x))
x = self.pool(x)
x = self.relu(self.conv3a(x))
x = self.relu(self.conv3b(x))
x = self.pool(x)
x = self.relu(self.conv4a(x))
x = self.relu(self.conv4b(x))
# Compute the dense keypoint scores
cPa = self.relu(self.convPa(x))
scores = self.convPb(cPa)
scores = torch.nn.functional.softmax(scores, 1)[:, :-1]
b, _, h, w = scores.shape
scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8)
scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8)
# Compute the dense descriptors
cDa = self.relu(self.convDa(x))
descriptors = self.convDb(cDa)
descriptors = torch.nn.functional.normalize(descriptors, p=2, dim=1)
return scores, descriptors
def det(self, image):
""" Compute keypoints, scores, descriptors for image """
# Shared Encoder
x = self.relu(self.conv1a(image))
x = self.relu(self.conv1b(x))
x = self.pool(x)
x = self.relu(self.conv2a(x))
x = self.relu(self.conv2b(x))
x = self.pool(x)
x = self.relu(self.conv3a(x))
x = self.relu(self.conv3b(x))
x = self.pool(x)
x = self.relu(self.conv4a(x))
x = self.relu(self.conv4b(x))
# Compute the dense keypoint scores
cPa = self.relu(self.convPa(x))
scores = self.convPb(cPa)
scores = torch.nn.functional.softmax(scores, 1)[:, :-1]
# print(scores.shape)
b, _, h, w = scores.shape
scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8)
scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8)
# Compute the dense descriptors
cDa = self.relu(self.convDa(x))
descriptors = self.convDb(cDa)
descriptors = torch.nn.functional.normalize(descriptors, p=2, dim=1)
return scores, descriptors
def forward(self, data):
""" Compute keypoints, scores, descriptors for image """
# Shared Encoder
x = self.relu(self.conv1a(data['image']))
x = self.relu(self.conv1b(x))
x = self.pool(x)
x = self.relu(self.conv2a(x))
x = self.relu(self.conv2b(x))
x = self.pool(x)
x = self.relu(self.conv3a(x))
x = self.relu(self.conv3b(x))
x = self.pool(x)
x = self.relu(self.conv4a(x))
x = self.relu(self.conv4b(x))
# Compute the dense keypoint scores
cPa = self.relu(self.convPa(x))
scores = self.convPb(cPa)
scores = torch.nn.functional.softmax(scores, 1)[:, :-1]
# print(scores.shape)
b, _, h, w = scores.shape
scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8)
scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8)
scores = simple_nms(scores, self.config['nms_radius'])
# Extract keypoints
keypoints = [
torch.nonzero(s > self.config['keypoint_threshold'])
for s in scores]
scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)]
# Discard keypoints near the image borders
keypoints, scores = list(zip(*[
remove_borders(k, s, self.config['remove_borders'], h * 8, w * 8)
for k, s in zip(keypoints, scores)]))
# Keep the k keypoints with highest score
if self.config['max_keypoints'] >= 0:
keypoints, scores = list(zip(*[
top_k_keypoints(k, s, self.config['max_keypoints'])
for k, s in zip(keypoints, scores)]))
# Convert (h, w) to (x, y)
keypoints = [torch.flip(k, [1]).float() for k in keypoints]
# Compute the dense descriptors
cDa = self.relu(self.convDa(x))
descriptors = self.convDb(cDa)
descriptors = torch.nn.functional.normalize(descriptors, p=2, dim=1)
# Extract descriptors
# print(keypoints[0].shape)
descriptors = [sample_descriptors(k[None], d[None], 8)[0]
for k, d in zip(keypoints, descriptors)]
return {
'keypoints': keypoints,
'scores': scores,
'descriptors': descriptors,
'global_descriptor': x,
}
def extract_descriptor(sample_pts, coarse_desc, H, W):
'''
:param samplt_pts:
:param coarse_desc:
:return:
'''
with torch.no_grad():
norm_sample_pts = torch.zeros_like(sample_pts)
norm_sample_pts[0, :] = (sample_pts[0, :] / (float(W) / 2.)) - 1. # x
norm_sample_pts[1, :] = (sample_pts[1, :] / (float(H) / 2.)) - 1. # y
norm_sample_pts = norm_sample_pts.transpose(0, 1).contiguous()
norm_sample_pts = norm_sample_pts.view(1, 1, -1, 2).float()
sample_desc = torch.nn.functional.grid_sample(coarse_desc[None], norm_sample_pts, mode='bilinear',
align_corners=False)
sample_desc = torch.nn.functional.normalize(sample_desc, dim=1).squeeze(2).squeeze(0)
return sample_desc
def extract_sp_return(model, img, conf_th=0.005,
mask=None,
topK=-1,
**kwargs):
old_bm = torch.backends.cudnn.benchmark
torch.backends.cudnn.benchmark = False # speedup
# print(img.shape)
img = img.cuda()
# if len(img.shape) == 3: # gray image
# img = img[None]
B, one, H, W = img.shape
all_pts = []
all_descs = []
if 'scales' in kwargs.keys():
scales = kwargs.get('scales')
else:
scales = [1.0]
for s in scales:
if s == 1.0:
new_img = img
else:
nh = int(H * s)
nw = int(W * s)
new_img = F.interpolate(img, size=(nh, nw), mode='bilinear', align_corners=True)
nh, nw = new_img.shape[2:]
with torch.no_grad():
heatmap, coarse_desc = model.det(new_img)
# print("nh, nw, heatmap, desc: ", nh, nw, heatmap.shape, coarse_desc.shape)
if len(heatmap.size()) == 3:
heatmap = heatmap.unsqueeze(1)
if len(heatmap.size()) == 2:
heatmap = heatmap.unsqueeze(0)
heatmap = heatmap.unsqueeze(1)
# print(heatmap.shape)
if heatmap.size(2) != nh or heatmap.size(3) != nw:
heatmap = F.interpolate(heatmap, size=[nh, nw], mode='bilinear', align_corners=True)
conf_thresh = conf_th
nms_dist = 4
border_remove = 4
scores = simple_nms(heatmap, nms_radius=nms_dist)
keypoints = [
torch.nonzero(s > conf_thresh)
for s in scores]
scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)]
# print(keypoints[0].shape)
keypoints = [torch.flip(k, [1]).float() for k in keypoints]
scores = scores[0].data.cpu().numpy().squeeze()
keypoints = keypoints[0].data.cpu().numpy().squeeze()
pts = keypoints.transpose()
pts[2, :] = scores
inds = np.argsort(pts[2, :])
pts = pts[:, inds[::-1]] # Sort by confidence.
# Remove points along border.
bord = border_remove
toremoveW = np.logical_or(pts[0, :] < bord, pts[0, :] >= (W - bord))
toremoveH = np.logical_or(pts[1, :] < bord, pts[1, :] >= (H - bord))
toremove = np.logical_or(toremoveW, toremoveH)
pts = pts[:, ~toremove]
# valid_idex = heatmap > conf_thresh
# valid_score = heatmap[valid_idex]
# """
# --- Process descriptor.
# coarse_desc = coarse_desc.data.cpu().numpy().squeeze()
D = coarse_desc.size(1)
if pts.shape[1] == 0:
desc = np.zeros((D, 0))
else:
if coarse_desc.size(2) == nh and coarse_desc.size(3) == nw:
desc = coarse_desc[:, :, pts[1, :], pts[0, :]]
desc = desc.data.cpu().numpy().reshape(D, -1)
else:
# Interpolate into descriptor map using 2D point locations.
samp_pts = torch.from_numpy(pts[:2, :].copy())
samp_pts[0, :] = (samp_pts[0, :] / (float(nw) / 2.)) - 1.
samp_pts[1, :] = (samp_pts[1, :] / (float(nh) / 2.)) - 1.
samp_pts = samp_pts.transpose(0, 1).contiguous()
samp_pts = samp_pts.view(1, 1, -1, 2)
samp_pts = samp_pts.float()
samp_pts = samp_pts.cuda()
desc = torch.nn.functional.grid_sample(coarse_desc, samp_pts, mode='bilinear', align_corners=True)
desc = desc.data.cpu().numpy().reshape(D, -1)
desc /= np.linalg.norm(desc, axis=0)[np.newaxis, :]
if pts.shape[1] == 0:
continue
# print(pts.shape, heatmap.shape, new_img.shape, img.shape, nw, nh, W, H)
pts[0, :] = pts[0, :] * W / nw
pts[1, :] = pts[1, :] * H / nh
all_pts.append(np.transpose(pts, [1, 0]))
all_descs.append(np.transpose(desc, [1, 0]))
all_pts = np.vstack(all_pts)
all_descs = np.vstack(all_descs)
torch.backends.cudnn.benchmark = old_bm
if all_pts.shape[0] == 0:
return None, None, None
keypoints = all_pts[:, 0:2]
scores = all_pts[:, 2]
descriptors = all_descs
if mask is not None:
# cv2.imshow("mask", mask)
# cv2.waitKey(0)
labels = []
others = []
keypoints_with_labels = []
scores_with_labels = []
descriptors_with_labels = []
keypoints_without_labels = []
scores_without_labels = []
descriptors_without_labels = []
id_img = np.int32(mask[:, :, 2]) * 256 * 256 + np.int32(mask[:, :, 1]) * 256 + np.int32(mask[:, :, 0])
# print(img.shape, id_img.shape)
for i in range(keypoints.shape[0]):
x = keypoints[i, 0]
y = keypoints[i, 1]
# print("x-y", x, y, int(x), int(y))
gid = id_img[int(y), int(x)]
if gid == 0:
keypoints_without_labels.append(keypoints[i])
scores_without_labels.append(scores[i])
descriptors_without_labels.append(descriptors[i])
others.append(0)
else:
keypoints_with_labels.append(keypoints[i])
scores_with_labels.append(scores[i])
descriptors_with_labels.append(descriptors[i])
labels.append(gid)
if topK > 0:
if topK <= len(keypoints_with_labels):
idxes = np.array(scores_with_labels, float).argsort()[::-1][:topK]
keypoints = np.array(keypoints_with_labels, float)[idxes]
scores = np.array(scores_with_labels, float)[idxes]
labels = np.array(labels, np.int32)[idxes]
descriptors = np.array(descriptors_with_labels, float)[idxes]
elif topK >= len(keypoints_with_labels) + len(keypoints_without_labels):
# keypoints = np.vstack([keypoints_with_labels, keypoints_without_labels])
# scores = np.vstack([scorescc_with_labels, scores_without_labels])
# descriptors = np.vstack([descriptors_with_labels, descriptors_without_labels])
# labels = np.vstack([labels, others])
keypoints = keypoints_with_labels
scores = scores_with_labels
descriptors = descriptors_with_labels
for i in range(len(others)):
keypoints.append(keypoints_without_labels[i])
scores.append(scores_without_labels[i])
descriptors.append(descriptors_without_labels[i])
labels.append(others[i])
else:
n = topK - len(keypoints_with_labels)
idxes = np.array(scores_without_labels, float).argsort()[::-1][:n]
keypoints = keypoints_with_labels
scores = scores_with_labels
descriptors = descriptors_with_labels
for i in idxes:
keypoints.append(keypoints_without_labels[i])
scores.append(scores_without_labels[i])
descriptors.append(descriptors_without_labels[i])
labels.append(others[i])
keypoints = np.array(keypoints, float)
descriptors = np.array(descriptors, float)
# print(keypoints.shape, descriptors.shape)
return {"keypoints": np.array(keypoints, float),
"descriptors": np.array(descriptors, float),
"scores": np.array(scores, float),
"labels": np.array(labels, np.int32),
}
else:
# print(topK)
if topK > 0:
idxes = np.array(scores, dtype=float).argsort()[::-1][:topK]
keypoints = np.array(keypoints[idxes], dtype=float)
scores = np.array(scores[idxes], dtype=float)
descriptors = np.array(descriptors[idxes], dtype=float)
keypoints = np.array(keypoints, dtype=float)
scores = np.array(scores, dtype=float)
descriptors = np.array(descriptors, dtype=float)
# print(keypoints.shape, descriptors.shape)
return {"keypoints": np.array(keypoints, dtype=float),
"descriptors": descriptors,
"scores": scores,
}
|