Spaces:
Running
Running
File size: 6,064 Bytes
a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# Standard libraries
import itertools
import numpy as np
# PyTorch
import torch
import torch.nn as nn
# Local
from . import JPEG_utils
class rgb_to_ycbcr_jpeg(nn.Module):
"""Converts RGB image to YCbCr
Input:
image(tensor): batch x 3 x height x width
Outpput:
result(tensor): batch x height x width x 3
"""
def __init__(self):
super(rgb_to_ycbcr_jpeg, self).__init__()
matrix = np.array(
[
[0.299, 0.587, 0.114],
[-0.168736, -0.331264, 0.5],
[0.5, -0.418688, -0.081312],
],
dtype=np.float32,
).T
self.shift = nn.Parameter(torch.tensor([0.0, 128.0, 128.0]))
#
self.matrix = nn.Parameter(torch.from_numpy(matrix))
def forward(self, image):
image = image.permute(0, 2, 3, 1)
result = torch.tensordot(image, self.matrix, dims=1) + self.shift
# result = torch.from_numpy(result)
result.view(image.shape)
return result
class chroma_subsampling(nn.Module):
"""Chroma subsampling on CbCv channels
Input:
image(tensor): batch x height x width x 3
Output:
y(tensor): batch x height x width
cb(tensor): batch x height/2 x width/2
cr(tensor): batch x height/2 x width/2
"""
def __init__(self):
super(chroma_subsampling, self).__init__()
def forward(self, image):
image_2 = image.permute(0, 3, 1, 2).clone()
avg_pool = nn.AvgPool2d(kernel_size=2, stride=(2, 2), count_include_pad=False)
cb = avg_pool(image_2[:, 1, :, :].unsqueeze(1))
cr = avg_pool(image_2[:, 2, :, :].unsqueeze(1))
cb = cb.permute(0, 2, 3, 1)
cr = cr.permute(0, 2, 3, 1)
return image[:, :, :, 0], cb.squeeze(3), cr.squeeze(3)
class block_splitting(nn.Module):
"""Splitting image into patches
Input:
image(tensor): batch x height x width
Output:
patch(tensor): batch x h*w/64 x h x w
"""
def __init__(self):
super(block_splitting, self).__init__()
self.k = 8
def forward(self, image):
height, width = image.shape[1:3]
# print(height, width)
batch_size = image.shape[0]
# print(image.shape)
image_reshaped = image.view(batch_size, height // self.k, self.k, -1, self.k)
image_transposed = image_reshaped.permute(0, 1, 3, 2, 4)
return image_transposed.contiguous().view(batch_size, -1, self.k, self.k)
class dct_8x8(nn.Module):
"""Discrete Cosine Transformation
Input:
image(tensor): batch x height x width
Output:
dcp(tensor): batch x height x width
"""
def __init__(self):
super(dct_8x8, self).__init__()
tensor = np.zeros((8, 8, 8, 8), dtype=np.float32)
for x, y, u, v in itertools.product(range(8), repeat=4):
tensor[x, y, u, v] = np.cos((2 * x + 1) * u * np.pi / 16) * np.cos(
(2 * y + 1) * v * np.pi / 16
)
alpha = np.array([1.0 / np.sqrt(2)] + [1] * 7)
#
self.tensor = nn.Parameter(torch.from_numpy(tensor).float())
self.scale = nn.Parameter(
torch.from_numpy(np.outer(alpha, alpha) * 0.25).float()
)
def forward(self, image):
image = image - 128
result = self.scale * torch.tensordot(image, self.tensor, dims=2)
result.view(image.shape)
return result
class y_quantize(nn.Module):
"""JPEG Quantization for Y channel
Input:
image(tensor): batch x height x width
rounding(function): rounding function to use
factor(float): Degree of compression
Output:
image(tensor): batch x height x width
"""
def __init__(self, rounding, factor=1):
super(y_quantize, self).__init__()
self.rounding = rounding
self.factor = factor
self.y_table = JPEG_utils.y_table
def forward(self, image):
image = image.float() / (self.y_table * self.factor)
image = self.rounding(image)
return image
class c_quantize(nn.Module):
"""JPEG Quantization for CrCb channels
Input:
image(tensor): batch x height x width
rounding(function): rounding function to use
factor(float): Degree of compression
Output:
image(tensor): batch x height x width
"""
def __init__(self, rounding, factor=1):
super(c_quantize, self).__init__()
self.rounding = rounding
self.factor = factor
self.c_table = JPEG_utils.c_table
def forward(self, image):
image = image.float() / (self.c_table * self.factor)
image = self.rounding(image)
return image
class compress_jpeg(nn.Module):
"""Full JPEG compression algortihm
Input:
imgs(tensor): batch x 3 x height x width
rounding(function): rounding function to use
factor(float): Compression factor
Ouput:
compressed(dict(tensor)): batch x h*w/64 x 8 x 8
"""
def __init__(self, rounding=torch.round, factor=1):
super(compress_jpeg, self).__init__()
self.l1 = nn.Sequential(
rgb_to_ycbcr_jpeg(),
# comment this line if no subsampling
chroma_subsampling(),
)
self.l2 = nn.Sequential(block_splitting(), dct_8x8())
self.c_quantize = c_quantize(rounding=rounding, factor=factor)
self.y_quantize = y_quantize(rounding=rounding, factor=factor)
def forward(self, image):
y, cb, cr = self.l1(image * 255) # modify
# y, cb, cr = result[:,:,:,0], result[:,:,:,1], result[:,:,:,2]
components = {"y": y, "cb": cb, "cr": cr}
for k in components.keys():
comp = self.l2(components[k])
# print(comp.shape)
if k in ("cb", "cr"):
comp = self.c_quantize(comp)
else:
comp = self.y_quantize(comp)
components[k] = comp
return components["y"], components["cb"], components["cr"]
|