Spaces:
Running
Running
File size: 16,620 Bytes
c0283b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
# -*- coding: utf-8 -*-
# @Author : xuelun
import cv2
import torch
import argparse
import warnings
import numpy as np
import matplotlib.pyplot as plt
import torchvision.transforms.functional as F
from os.path import join
from dkm.models.model_zoo.DKMv3 import DKMv3
from gluefactory.superpoint import SuperPoint
from gluefactory.models.matchers.lightglue import LightGlue
DEFAULT_MIN_NUM_MATCHES = 4
DEFAULT_RANSAC_MAX_ITER = 10000
DEFAULT_RANSAC_CONFIDENCE = 0.999
DEFAULT_RANSAC_REPROJ_THRESHOLD = 8
DEFAULT_RANSAC_METHOD = "USAC_MAGSAC"
RANSAC_ZOO = {
"RANSAC": cv2.RANSAC,
"USAC_FAST": cv2.USAC_FAST,
"USAC_MAGSAC": cv2.USAC_MAGSAC,
"USAC_PROSAC": cv2.USAC_PROSAC,
"USAC_DEFAULT": cv2.USAC_DEFAULT,
"USAC_FM_8PTS": cv2.USAC_FM_8PTS,
"USAC_ACCURATE": cv2.USAC_ACCURATE,
"USAC_PARALLEL": cv2.USAC_PARALLEL,
}
def read_image(path, grayscale=False):
if grayscale:
mode = cv2.IMREAD_GRAYSCALE
else:
mode = cv2.IMREAD_COLOR
image = cv2.imread(str(path), mode)
if image is None:
raise ValueError(f'Cannot read image {path}.')
if not grayscale and len(image.shape) == 3:
image = image[:, :, ::-1] # BGR to RGB
return image
def resize_image(image, size, interp):
assert interp.startswith('cv2_')
if interp.startswith('cv2_'):
interp = getattr(cv2, 'INTER_'+interp[len('cv2_'):].upper())
h, w = image.shape[:2]
if interp == cv2.INTER_AREA and (w < size[0] or h < size[1]):
interp = cv2.INTER_LINEAR
resized = cv2.resize(image, size, interpolation=interp)
# elif interp.startswith('pil_'):
# interp = getattr(PIL.Image, interp[len('pil_'):].upper())
# resized = PIL.Image.fromarray(image.astype(np.uint8))
# resized = resized.resize(size, resample=interp)
# resized = np.asarray(resized, dtype=image.dtype)
else:
raise ValueError(
f'Unknown interpolation {interp}.')
return resized
def fast_make_matching_figure(data, b_id):
color0 = (data['color0'][b_id].permute(1, 2, 0).cpu().detach().numpy() * 255).round().astype(np.uint8) # (rH, rW, 3)
color1 = (data['color1'][b_id].permute(1, 2, 0).cpu().detach().numpy() * 255).round().astype(np.uint8) # (rH, rW, 3)
gray0 = cv2.cvtColor(color0, cv2.COLOR_RGB2GRAY)
gray1 = cv2.cvtColor(color1, cv2.COLOR_RGB2GRAY)
kpts0 = data['mkpts0_f'].cpu().detach().numpy()
kpts1 = data['mkpts1_f'].cpu().detach().numpy()
mconf = data['mconf'].cpu().detach().numpy()
inliers = data['inliers']
rows = 2
margin = 2
(h0, w0), (h1, w1) = data['hw0_i'], data['hw1_i']
h = max(h0, h1)
H, W = margin * (rows + 1) + h * rows, margin * 3 + w0 + w1
# canvas
out = 255 * np.ones((H, W), np.uint8)
wx = [margin, margin + w0, margin + w0 + margin, margin + w0 + margin + w1]
hx = lambda row: margin * row + h * (row-1)
out = np.stack([out] * 3, -1)
sh = hx(row=1)
out[sh: sh + h0, wx[0]: wx[1]] = color0
out[sh: sh + h1, wx[2]: wx[3]] = color1
sh = hx(row=2)
out[sh: sh + h0, wx[0]: wx[1]] = color0
out[sh: sh + h1, wx[2]: wx[3]] = color1
mkpts0, mkpts1 = np.round(kpts0).astype(int), np.round(kpts1).astype(int)
for (x0, y0), (x1, y1) in zip(mkpts0[inliers], mkpts1[inliers]):
c = (0, 255, 0)
cv2.circle(out, (x0, y0 + sh), 3, c, -1, lineType=cv2.LINE_AA)
cv2.circle(out, (x1 + margin + w0, y1 + sh), 3, c, -1, lineType=cv2.LINE_AA)
return out
def fast_make_matching_overlay(data, b_id):
color0 = (data['color0'][b_id].permute(1, 2, 0).cpu().detach().numpy() * 255).round().astype(np.uint8) # (rH, rW, 3)
color1 = (data['color1'][b_id].permute(1, 2, 0).cpu().detach().numpy() * 255).round().astype(np.uint8) # (rH, rW, 3)
gray0 = cv2.cvtColor(color0, cv2.COLOR_RGB2GRAY)
gray1 = cv2.cvtColor(color1, cv2.COLOR_RGB2GRAY)
kpts0 = data['mkpts0_f'].cpu().detach().numpy()
kpts1 = data['mkpts1_f'].cpu().detach().numpy()
mconf = data['mconf'].cpu().detach().numpy()
inliers = data['inliers']
rows = 2
margin = 2
(h0, w0), (h1, w1) = data['hw0_i'], data['hw1_i']
h = max(h0, h1)
H, W = margin * (rows + 1) + h * rows, margin * 3 + w0 + w1
# canvas
out = 255 * np.ones((H, W), np.uint8)
wx = [margin, margin + w0, margin + w0 + margin, margin + w0 + margin + w1]
hx = lambda row: margin * row + h * (row-1)
out = np.stack([out] * 3, -1)
sh = hx(row=1)
out[sh: sh + h0, wx[0]: wx[1]] = color0
out[sh: sh + h1, wx[2]: wx[3]] = color1
sh = hx(row=2)
out[sh: sh + h0, wx[0]: wx[1]] = color0
out[sh: sh + h1, wx[2]: wx[3]] = color1
mkpts0, mkpts1 = np.round(kpts0).astype(int), np.round(kpts1).astype(int)
for (x0, y0), (x1, y1) in zip(mkpts0[inliers], mkpts1[inliers]):
c = (0, 255, 0)
cv2.line(out, (x0, y0 + sh), (x1 + margin + w0, y1 + sh), color=c, thickness=1, lineType=cv2.LINE_AA)
cv2.circle(out, (x0, y0 + sh), 3, c, -1, lineType=cv2.LINE_AA)
cv2.circle(out, (x1 + margin + w0, y1 + sh), 3, c, -1, lineType=cv2.LINE_AA)
return out
def preprocess(image: np.ndarray, grayscale: bool = False, resize_max: int = None,
dfactor: int = 8):
image = image.astype(np.float32, copy=False)
size = image.shape[:2][::-1]
scale = np.array([1.0, 1.0])
if resize_max:
scale = resize_max / max(size)
if scale < 1.0:
size_new = tuple(int(round(x*scale)) for x in size)
image = resize_image(image, size_new, 'cv2_area')
scale = np.array(size) / np.array(size_new)
if grayscale:
assert image.ndim == 2, image.shape
image = image[None]
else:
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
image = torch.from_numpy(image / 255.0).float()
# assure that the size is divisible by dfactor
size_new = tuple(map(
lambda x: int(x // dfactor * dfactor),
image.shape[-2:]))
image = F.resize(image, size=size_new)
scale = np.array(size) / np.array(size_new)[::-1]
return image, scale
def compute_geom(data,
ransac_method=DEFAULT_RANSAC_METHOD,
ransac_reproj_threshold=DEFAULT_RANSAC_REPROJ_THRESHOLD,
ransac_confidence=DEFAULT_RANSAC_CONFIDENCE,
ransac_max_iter=DEFAULT_RANSAC_MAX_ITER,
) -> dict:
mkpts0 = data["mkpts0_f"].cpu().detach().numpy()
mkpts1 = data["mkpts1_f"].cpu().detach().numpy()
if len(mkpts0) < 2 * DEFAULT_MIN_NUM_MATCHES:
return {}
h1, w1 = data["hw0_i"]
geo_info = {}
F, inliers = cv2.findFundamentalMat(
mkpts0,
mkpts1,
method=RANSAC_ZOO[ransac_method],
ransacReprojThreshold=ransac_reproj_threshold,
confidence=ransac_confidence,
maxIters=ransac_max_iter,
)
if F is not None:
geo_info["Fundamental"] = F.tolist()
H, _ = cv2.findHomography(
mkpts1,
mkpts0,
method=RANSAC_ZOO[ransac_method],
ransacReprojThreshold=ransac_reproj_threshold,
confidence=ransac_confidence,
maxIters=ransac_max_iter,
)
if H is not None:
geo_info["Homography"] = H.tolist()
_, H1, H2 = cv2.stereoRectifyUncalibrated(
mkpts0.reshape(-1, 2),
mkpts1.reshape(-1, 2),
F,
imgSize=(w1, h1),
)
geo_info["H1"] = H1.tolist()
geo_info["H2"] = H2.tolist()
return geo_info
def wrap_images(img0, img1, geo_info, geom_type):
img0 = img0[0].permute((1, 2, 0)).cpu().detach().numpy()[..., ::-1]
img1 = img1[0].permute((1, 2, 0)).cpu().detach().numpy()[..., ::-1]
h1, w1, _ = img0.shape
h2, w2, _ = img1.shape
rectified_image0 = img0
rectified_image1 = None
H = np.array(geo_info["Homography"])
F = np.array(geo_info["Fundamental"])
title = []
if geom_type == "Homography":
rectified_image1 = cv2.warpPerspective(
img1, H, (img0.shape[1], img0.shape[0])
)
title = ["Image 0", "Image 1 - warped"]
elif geom_type == "Fundamental":
H1, H2 = np.array(geo_info["H1"]), np.array(geo_info["H2"])
rectified_image0 = cv2.warpPerspective(img0, H1, (w1, h1))
rectified_image1 = cv2.warpPerspective(img1, H2, (w2, h2))
title = ["Image 0 - warped", "Image 1 - warped"]
else:
print("Error: Unknown geometry type")
fig = plot_images(
[rectified_image0.squeeze(), rectified_image1.squeeze()],
title,
dpi=300,
)
img = fig2im(fig)
plt.close(fig)
return img
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, size=5, pad=0.5):
"""Plot a set of images horizontally.
Args:
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
titles: a list of strings, as titles for each image.
cmaps: colormaps for monochrome images.
dpi:
size:
pad:
"""
n = len(imgs)
if not isinstance(cmaps, (list, tuple)):
cmaps = [cmaps] * n
figsize = (size * n, size * 6 / 5) if size is not None else None
fig, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)
if n == 1:
ax = [ax]
for i in range(n):
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
ax[i].get_yaxis().set_ticks([])
ax[i].get_xaxis().set_ticks([])
ax[i].set_axis_off()
for spine in ax[i].spines.values(): # remove frame
spine.set_visible(False)
if titles:
ax[i].set_title(titles[i])
fig.tight_layout(pad=pad)
return fig
def fig2im(fig):
fig.canvas.draw()
w, h = fig.canvas.get_width_height()
buf_ndarray = np.frombuffer(fig.canvas.tostring_rgb(), dtype="u1")
im = buf_ndarray.reshape(h, w, 3)
return im
if __name__ == '__main__':
model_zoo = ['gim_dkm', 'gim_lightglue']
# model
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='gim_dkm', choices=model_zoo)
args = parser.parse_args()
# device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# load model
ckpt = None
model = None
detector = None
if args.model == 'gim_dkm':
ckpt = 'gim_dkm_100h.ckpt'
model = DKMv3(weights=None, h=672, w=896)
elif args.model == 'gim_lightglue':
ckpt = 'gim_lightglue_100h.ckpt'
detector = SuperPoint({
'max_num_keypoints': 2048,
'force_num_keypoints': True,
'detection_threshold': 0.0,
'nms_radius': 3,
'trainable': False,
})
model = LightGlue({
'filter_threshold': 0.1,
'flash': False,
'checkpointed': True,
})
# weights path
checkpoints_path = join('weights', ckpt)
# load state dict
if args.model == 'gim_dkm':
state_dict = torch.load(checkpoints_path, map_location='cpu')
if 'state_dict' in state_dict.keys(): state_dict = state_dict['state_dict']
for k in list(state_dict.keys()):
if k.startswith('model.'):
state_dict[k.replace('model.', '', 1)] = state_dict.pop(k)
if 'encoder.net.fc' in k:
state_dict.pop(k)
model.load_state_dict(state_dict)
elif args.model == 'gim_lightglue':
state_dict = torch.load(checkpoints_path, map_location='cpu')
if 'state_dict' in state_dict.keys(): state_dict = state_dict['state_dict']
for k in list(state_dict.keys()):
if k.startswith('model.'):
state_dict.pop(k)
if k.startswith('superpoint.'):
state_dict[k.replace('superpoint.', '', 1)] = state_dict.pop(k)
detector.load_state_dict(state_dict)
state_dict = torch.load(checkpoints_path, map_location='cpu')
if 'state_dict' in state_dict.keys(): state_dict = state_dict['state_dict']
for k in list(state_dict.keys()):
if k.startswith('superpoint.'):
state_dict.pop(k)
if k.startswith('model.'):
state_dict[k.replace('model.', '', 1)] = state_dict.pop(k)
model.load_state_dict(state_dict)
# eval mode
if detector is not None:
detector = detector.eval().to(device)
model = model.eval().to(device)
name0 = 'a1'
name1 = 'a2'
postfix = '.png'
image_dir = join('assets', 'demo')
img_path0 = join(image_dir, name0 + postfix)
img_path1 = join(image_dir, name1 + postfix)
image0 = read_image(img_path0)
image1 = read_image(img_path1)
image0, scale0 = preprocess(image0)
image1, scale1 = preprocess(image1)
image0 = image0.to(device)[None]
image1 = image1.to(device)[None]
data = dict(color0=image0, color1=image1, image0=image0, image1=image1)
if args.model == 'gim_dkm':
with warnings.catch_warnings():
warnings.simplefilter("ignore")
dense_matches, dense_certainty = model.match(image0, image1)
sparse_matches, mconf = model.sample(dense_matches, dense_certainty, 5000)
height0, width0 = image0.shape[-2:]
height1, width1 = image1.shape[-2:]
kpts0 = sparse_matches[:, :2]
kpts0 = torch.stack((
width0 * (kpts0[:, 0] + 1) / 2, height0 * (kpts0[:, 1] + 1) / 2), dim=-1,)
kpts1 = sparse_matches[:, 2:]
kpts1 = torch.stack((
width1 * (kpts1[:, 0] + 1) / 2, height1 * (kpts1[:, 1] + 1) / 2), dim=-1,)
b_ids = torch.where(mconf[None])[0]
elif args.model == 'gim_lightglue':
gray0 = read_image(img_path0, grayscale=True)
gray1 = read_image(img_path1, grayscale=True)
gray0 = preprocess(gray0, grayscale=True)[0]
gray1 = preprocess(gray1, grayscale=True)[0]
gray0 = gray0.to(device)[None]
gray1 = gray1.to(device)[None]
scale0 = torch.tensor(scale0).to(device)[None]
scale1 = torch.tensor(scale1).to(device)[None]
data.update(dict(gray0=gray0, gray1=gray1))
size0 = torch.tensor(data["gray0"].shape[-2:][::-1])[None]
size1 = torch.tensor(data["gray1"].shape[-2:][::-1])[None]
data.update(dict(size0=size0, size1=size1))
data.update(dict(scale0=scale0, scale1=scale1))
pred = {}
pred.update({k + '0': v for k, v in detector({
"image": data["gray0"],
"image_size": data["size0"],
}).items()})
pred.update({k + '1': v for k, v in detector({
"image": data["gray1"],
"image_size": data["size1"],
}).items()})
pred.update(model({**pred, **data,
**{'resize0': data['size0'], 'resize1': data['size1']}}))
kpts0 = torch.cat([kp * s for kp, s in zip(pred['keypoints0'], data['scale0'][:, None])])
kpts1 = torch.cat([kp * s for kp, s in zip(pred['keypoints1'], data['scale1'][:, None])])
m_bids = torch.nonzero(pred['keypoints0'].sum(dim=2) > -1)[:, 0]
matches = pred['matches']
bs = data['image0'].size(0)
kpts0 = torch.cat([kpts0[m_bids == b_id][matches[b_id][..., 0]] for b_id in range(bs)])
kpts1 = torch.cat([kpts1[m_bids == b_id][matches[b_id][..., 1]] for b_id in range(bs)])
b_ids = torch.cat([m_bids[m_bids == b_id][matches[b_id][..., 0]] for b_id in range(bs)])
mconf = torch.cat(pred['scores'])
# robust fitting
_, mask = cv2.findFundamentalMat(kpts0.cpu().detach().numpy(),
kpts1.cpu().detach().numpy(),
cv2.USAC_MAGSAC, ransacReprojThreshold=1.0,
confidence=0.999999, maxIters=10000)
mask = mask.ravel() > 0
data.update({
'hw0_i': image0.shape[-2:],
'hw1_i': image1.shape[-2:],
'mkpts0_f': kpts0,
'mkpts1_f': kpts1,
'm_bids': b_ids,
'mconf': mconf,
'inliers': mask,
})
# save visualization
alpha = 0.5
out = fast_make_matching_figure(data, b_id=0)
overlay = fast_make_matching_overlay(data, b_id=0)
out = cv2.addWeighted(out, 1 - alpha, overlay, alpha, 0)
cv2.imwrite(join(image_dir, f'{name0}_{name1}_{args.model}_match.png'), out[..., ::-1])
geom_info = compute_geom(data)
wrapped_images = wrap_images(image0, image1, geom_info,
"Homography")
cv2.imwrite(join(image_dir, f'{name0}_{name1}_{args.model}_warp.png'), wrapped_images)
|