File size: 6,240 Bytes
a80d6bb
 
 
 
 
 
 
 
 
 
86d1c07
 
 
a80d6bb
 
c74a070
a80d6bb
c74a070
 
a80d6bb
 
 
 
c74a070
 
a80d6bb
 
 
c74a070
a80d6bb
 
 
 
 
c74a070
a80d6bb
 
 
 
 
c74a070
a80d6bb
 
c74a070
 
a80d6bb
 
 
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
 
c74a070
a80d6bb
c74a070
 
 
 
 
a80d6bb
c74a070
 
a80d6bb
 
 
c74a070
a80d6bb
c74a070
 
 
a80d6bb
 
 
c74a070
 
 
 
a80d6bb
 
 
c74a070
 
 
a80d6bb
 
 
 
 
 
c74a070
 
a80d6bb
 
 
 
 
 
c74a070
 
 
a80d6bb
 
 
 
 
 
 
 
 
c74a070
 
a80d6bb
 
 
c74a070
 
a80d6bb
 
 
c74a070
 
a80d6bb
 
c74a070
a80d6bb
c74a070
a80d6bb
c74a070
 
 
 
a80d6bb
c74a070
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
 
 
c74a070
a80d6bb
c74a070
 
 
 
 
 
 
 
 
a80d6bb
 
c74a070
a80d6bb
c74a070
a80d6bb
c74a070
 
 
 
 
 
 
 
a80d6bb
 
 
 
 
 
c74a070
a80d6bb
 
 
c74a070
 
 
a80d6bb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use


import os, pdb
from PIL import Image
import numpy as np
import torch

from .tools import common
from .tools.dataloader import norm_RGB
from .nets.patchnet import *


def load_network(model_fn):
    checkpoint = torch.load(model_fn)
    print("\n>> Creating net = " + checkpoint["net"])
    net = eval(checkpoint["net"])
    nb_of_weights = common.model_size(net)
    print(f" ( Model size: {nb_of_weights/1000:.0f}K parameters )")

    # initialization
    weights = checkpoint["state_dict"]
    net.load_state_dict({k.replace("module.", ""): v for k, v in weights.items()})
    return net.eval()


class NonMaxSuppression(torch.nn.Module):
    def __init__(self, rel_thr=0.7, rep_thr=0.7):
        nn.Module.__init__(self)
        self.max_filter = torch.nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.rel_thr = rel_thr
        self.rep_thr = rep_thr

    def forward(self, reliability, repeatability, **kw):
        assert len(reliability) == len(repeatability) == 1
        reliability, repeatability = reliability[0], repeatability[0]

        # local maxima
        maxima = repeatability == self.max_filter(repeatability)

        # remove low peaks
        maxima *= repeatability >= self.rep_thr
        maxima *= reliability >= self.rel_thr

        return maxima.nonzero().t()[2:4]


def extract_multiscale(
    net,
    img,
    detector,
    scale_f=2**0.25,
    min_scale=0.0,
    max_scale=1,
    min_size=256,
    max_size=1024,
    verbose=False,
):
    old_bm = torch.backends.cudnn.benchmark
    torch.backends.cudnn.benchmark = False  # speedup

    # extract keypoints at multiple scales
    B, three, H, W = img.shape
    assert B == 1 and three == 3, "should be a batch with a single RGB image"

    assert max_scale <= 1
    s = 1.0  # current scale factor

    X, Y, S, C, Q, D = [], [], [], [], [], []
    while s + 0.001 >= max(min_scale, min_size / max(H, W)):
        if s - 0.001 <= min(max_scale, max_size / max(H, W)):
            nh, nw = img.shape[2:]
            if verbose:
                print(f"extracting at scale x{s:.02f} = {nw:4d}x{nh:3d}")
            # extract descriptors
            with torch.no_grad():
                res = net(imgs=[img])

            # get output and reliability map
            descriptors = res["descriptors"][0]
            reliability = res["reliability"][0]
            repeatability = res["repeatability"][0]

            # normalize the reliability for nms
            # extract maxima and descs
            y, x = detector(**res)  # nms
            c = reliability[0, 0, y, x]
            q = repeatability[0, 0, y, x]
            d = descriptors[0, :, y, x].t()
            n = d.shape[0]

            # accumulate multiple scales
            X.append(x.float() * W / nw)
            Y.append(y.float() * H / nh)
            S.append((32 / s) * torch.ones(n, dtype=torch.float32, device=d.device))
            C.append(c)
            Q.append(q)
            D.append(d)
        s /= scale_f

        # down-scale the image for next iteration
        nh, nw = round(H * s), round(W * s)
        img = F.interpolate(img, (nh, nw), mode="bilinear", align_corners=False)

    # restore value
    torch.backends.cudnn.benchmark = old_bm

    Y = torch.cat(Y)
    X = torch.cat(X)
    S = torch.cat(S)  # scale
    scores = torch.cat(C) * torch.cat(Q)  # scores = reliability * repeatability
    XYS = torch.stack([X, Y, S], dim=-1)
    D = torch.cat(D)
    return XYS, D, scores


def extract_keypoints(args):
    iscuda = common.torch_set_gpu(args.gpu)

    # load the network...
    net = load_network(args.model)
    if iscuda:
        net = net.cuda()

    # create the non-maxima detector
    detector = NonMaxSuppression(
        rel_thr=args.reliability_thr, rep_thr=args.repeatability_thr
    )

    while args.images:
        img_path = args.images.pop(0)

        if img_path.endswith(".txt"):
            args.images = open(img_path).read().splitlines() + args.images
            continue

        print(f"\nExtracting features for {img_path}")
        img = Image.open(img_path).convert("RGB")
        W, H = img.size
        img = norm_RGB(img)[None]
        if iscuda:
            img = img.cuda()

        # extract keypoints/descriptors for a single image
        xys, desc, scores = extract_multiscale(
            net,
            img,
            detector,
            scale_f=args.scale_f,
            min_scale=args.min_scale,
            max_scale=args.max_scale,
            min_size=args.min_size,
            max_size=args.max_size,
            verbose=True,
        )

        xys = xys.cpu().numpy()
        desc = desc.cpu().numpy()
        scores = scores.cpu().numpy()
        idxs = scores.argsort()[-args.top_k or None :]

        outpath = img_path + "." + args.tag
        print(f"Saving {len(idxs)} keypoints to {outpath}")
        np.savez(
            open(outpath, "wb"),
            imsize=(W, H),
            keypoints=xys[idxs],
            descriptors=desc[idxs],
            scores=scores[idxs],
        )


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser("Extract keypoints for a given image")
    parser.add_argument("--model", type=str, required=True, help="model path")

    parser.add_argument(
        "--images", type=str, required=True, nargs="+", help="images / list"
    )
    parser.add_argument("--tag", type=str, default="r2d2", help="output file tag")

    parser.add_argument("--top-k", type=int, default=5000, help="number of keypoints")

    parser.add_argument("--scale-f", type=float, default=2**0.25)
    parser.add_argument("--min-size", type=int, default=256)
    parser.add_argument("--max-size", type=int, default=1024)
    parser.add_argument("--min-scale", type=float, default=0)
    parser.add_argument("--max-scale", type=float, default=1)

    parser.add_argument("--reliability-thr", type=float, default=0.7)
    parser.add_argument("--repeatability-thr", type=float, default=0.7)

    parser.add_argument(
        "--gpu", type=int, nargs="+", default=[0], help="use -1 for CPU"
    )
    args = parser.parse_args()

    extract_keypoints(args)