File size: 7,046 Bytes
a80d6bb
c74a070
a80d6bb
 
 
 
c74a070
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
a80d6bb
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
 
 
 
 
 
 
 
 
c74a070
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
a80d6bb
 
 
 
 
 
c74a070
 
 
a80d6bb
 
 
 
 
c74a070
 
 
a80d6bb
 
 
 
c74a070
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
 
c74a070
 
a80d6bb
 
 
c74a070
 
a80d6bb
 
 
 
 
 
 
c74a070
 
 
a80d6bb
 
c74a070
 
 
 
 
a80d6bb
 
 
 
 
 
c74a070
 
 
a80d6bb
 
c74a070
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from yacs.config import CfgNode as CN

_CN = CN()

##############  ↓  MODEL Pipeline  ↓  ##############
_CN.MODEL = CN()
_CN.MODEL.BACKBONE_TYPE = "FPN"
_CN.MODEL.RESOLUTION = (8, 2)  # options: [(8, 2), (16, 4)]
_CN.MODEL.FINE_WINDOW_SIZE = 5  # window_size in fine_level, must be odd
_CN.MODEL.FINE_CONCAT_COARSE_FEAT = False

# 1. MODEL-backbone (local feature CNN) config
_CN.MODEL.FPN = CN()
_CN.MODEL.FPN.INITIAL_DIM = 128
_CN.MODEL.FPN.BLOCK_DIMS = [128, 192, 256, 384]  # s1, s2, s3

# 2. MODEL-coarse module config
_CN.MODEL.COARSE = CN()
_CN.MODEL.COARSE.D_MODEL = 256
_CN.MODEL.COARSE.D_FFN = 256
_CN.MODEL.COARSE.NHEAD = 8
_CN.MODEL.COARSE.LAYER_NAMES = ["seed", "seed", "seed", "seed", "seed"]
_CN.MODEL.COARSE.ATTENTION = "linear"  # options: ['linear', 'full']
_CN.MODEL.COARSE.TEMP_BUG_FIX = True
_CN.MODEL.COARSE.N_TOPICS = 100
_CN.MODEL.COARSE.N_SAMPLES = 6
_CN.MODEL.COARSE.N_TOPIC_TRANSFORMERS = 1

# 3. Coarse-Matching config
_CN.MODEL.MATCH_COARSE = CN()
_CN.MODEL.MATCH_COARSE.THR = 0.2
_CN.MODEL.MATCH_COARSE.BORDER_RM = 2
_CN.MODEL.MATCH_COARSE.MATCH_TYPE = "dual_softmax"
_CN.MODEL.MATCH_COARSE.DSMAX_TEMPERATURE = 0.1
_CN.MODEL.MATCH_COARSE.TRAIN_COARSE_PERCENT = 0.2  # training tricks: save GPU memory
_CN.MODEL.MATCH_COARSE.TRAIN_PAD_NUM_GT_MIN = 200  # training tricks: avoid DDP deadlock
_CN.MODEL.MATCH_COARSE.SPARSE_SPVS = True

# 4. MODEL-fine module config
_CN.MODEL.FINE = CN()
_CN.MODEL.FINE.D_MODEL = 128
_CN.MODEL.FINE.D_FFN = 128
_CN.MODEL.FINE.NHEAD = 4
_CN.MODEL.FINE.LAYER_NAMES = ["cross"] * 1
_CN.MODEL.FINE.ATTENTION = "linear"
_CN.MODEL.FINE.N_TOPICS = 1

# 5. MODEL Losses
# -- # coarse-level
_CN.MODEL.LOSS = CN()
_CN.MODEL.LOSS.COARSE_WEIGHT = 1.0
# _CN.MODEL.LOSS.SPARSE_SPVS = False
# -- - -- # focal loss (coarse)
_CN.MODEL.LOSS.FOCAL_ALPHA = 0.25
_CN.MODEL.LOSS.POS_WEIGHT = 1.0
_CN.MODEL.LOSS.NEG_WEIGHT = 1.0
# _CN.MODEL.LOSS.DUAL_SOFTMAX = False  # whether coarse-level use dual-softmax or not.
# use `_CN.MODEL.MATCH_COARSE.MATCH_TYPE`

# -- # fine-level
_CN.MODEL.LOSS.FINE_TYPE = "l2_with_std"  # ['l2_with_std', 'l2']
_CN.MODEL.LOSS.FINE_WEIGHT = 1.0
_CN.MODEL.LOSS.FINE_CORRECT_THR = 1.0  # for filtering valid fine-level gts (some gt matches might fall out of the fine-level window)


##############  Dataset  ##############
_CN.DATASET = CN()
# 1. data config
# training and validating
_CN.DATASET.TRAINVAL_DATA_SOURCE = None  # options: ['ScanNet', 'MegaDepth']
_CN.DATASET.TRAIN_DATA_ROOT = None
_CN.DATASET.TRAIN_POSE_ROOT = None  # (optional directory for poses)
_CN.DATASET.TRAIN_NPZ_ROOT = None
_CN.DATASET.TRAIN_LIST_PATH = None
_CN.DATASET.TRAIN_INTRINSIC_PATH = None
_CN.DATASET.VAL_DATA_ROOT = None
_CN.DATASET.VAL_POSE_ROOT = None  # (optional directory for poses)
_CN.DATASET.VAL_NPZ_ROOT = None
_CN.DATASET.VAL_LIST_PATH = (
    None  # None if val data from all scenes are bundled into a single npz file
)
_CN.DATASET.VAL_INTRINSIC_PATH = None
# testing
_CN.DATASET.TEST_DATA_SOURCE = None
_CN.DATASET.TEST_DATA_ROOT = None
_CN.DATASET.TEST_POSE_ROOT = None  # (optional directory for poses)
_CN.DATASET.TEST_NPZ_ROOT = None
_CN.DATASET.TEST_LIST_PATH = (
    None  # None if test data from all scenes are bundled into a single npz file
)
_CN.DATASET.TEST_INTRINSIC_PATH = None
_CN.DATASET.TEST_IMGSIZE = None

# 2. dataset config
# general options
_CN.DATASET.MIN_OVERLAP_SCORE_TRAIN = (
    0.4  # discard data with overlap_score < min_overlap_score
)
_CN.DATASET.MIN_OVERLAP_SCORE_TEST = 0.0
_CN.DATASET.AUGMENTATION_TYPE = None  # options: [None, 'dark', 'mobile']

# MegaDepth options
_CN.DATASET.MGDPT_IMG_RESIZE = (
    640  # resize the longer side, zero-pad bottom-right to square.
)
_CN.DATASET.MGDPT_IMG_PAD = True  # pad img to square with size = MGDPT_IMG_RESIZE
_CN.DATASET.MGDPT_DEPTH_PAD = True  # pad depthmap to square with size = 2000
_CN.DATASET.MGDPT_DF = 8

##############  Trainer  ##############
_CN.TRAINER = CN()
_CN.TRAINER.WORLD_SIZE = 1
_CN.TRAINER.CANONICAL_BS = 64
_CN.TRAINER.CANONICAL_LR = 6e-3
_CN.TRAINER.SCALING = None  # this will be calculated automatically
_CN.TRAINER.FIND_LR = False  # use learning rate finder from pytorch-lightning

# optimizer
_CN.TRAINER.OPTIMIZER = "adamw"  # [adam, adamw]
_CN.TRAINER.TRUE_LR = None  # this will be calculated automatically at runtime
_CN.TRAINER.ADAM_DECAY = 0.0  # ADAM: for adam
_CN.TRAINER.ADAMW_DECAY = 0.01

# step-based warm-up
_CN.TRAINER.WARMUP_TYPE = "linear"  # [linear, constant]
_CN.TRAINER.WARMUP_RATIO = 0.0
_CN.TRAINER.WARMUP_STEP = 4800

# learning rate scheduler
_CN.TRAINER.SCHEDULER = "MultiStepLR"  # [MultiStepLR, CosineAnnealing, ExponentialLR]
_CN.TRAINER.SCHEDULER_INTERVAL = "epoch"  # [epoch, step]
_CN.TRAINER.MSLR_MILESTONES = [3, 6, 9, 12]  # MSLR: MultiStepLR
_CN.TRAINER.MSLR_GAMMA = 0.5
_CN.TRAINER.COSA_TMAX = 30  # COSA: CosineAnnealing
_CN.TRAINER.ELR_GAMMA = 0.999992  # ELR: ExponentialLR, this value for 'step' interval

# plotting related
_CN.TRAINER.ENABLE_PLOTTING = True
_CN.TRAINER.N_VAL_PAIRS_TO_PLOT = 32  # number of val/test paris for plotting
_CN.TRAINER.PLOT_MODE = "evaluation"  # ['evaluation', 'confidence']
_CN.TRAINER.PLOT_MATCHES_ALPHA = "dynamic"

# geometric metrics and pose solver
_CN.TRAINER.EPI_ERR_THR = (
    5e-4  # recommendation: 5e-4 for ScanNet, 1e-4 for MegaDepth (from SuperGlue)
)
_CN.TRAINER.POSE_GEO_MODEL = "E"  # ['E', 'F', 'H']
_CN.TRAINER.POSE_ESTIMATION_METHOD = "RANSAC"  # [RANSAC, DEGENSAC, MAGSAC]
_CN.TRAINER.RANSAC_PIXEL_THR = 0.5
_CN.TRAINER.RANSAC_CONF = 0.99999
_CN.TRAINER.RANSAC_MAX_ITERS = 10000
_CN.TRAINER.USE_MAGSACPP = False

# data sampler for train_dataloader
_CN.TRAINER.DATA_SAMPLER = (
    "scene_balance"  # options: ['scene_balance', 'random', 'normal']
)
# 'scene_balance' config
_CN.TRAINER.N_SAMPLES_PER_SUBSET = 200
_CN.TRAINER.SB_SUBSET_SAMPLE_REPLACEMENT = (
    True  # whether sample each scene with replacement or not
)
_CN.TRAINER.SB_SUBSET_SHUFFLE = (
    True  # after sampling from scenes, whether shuffle within the epoch or not
)
_CN.TRAINER.SB_REPEAT = 1  # repeat N times for training the sampled data
# 'random' config
_CN.TRAINER.RDM_REPLACEMENT = True
_CN.TRAINER.RDM_NUM_SAMPLES = None

# gradient clipping
_CN.TRAINER.GRADIENT_CLIPPING = 0.5

# reproducibility
# This seed affects the data sampling. With the same seed, the data sampling is promised
# to be the same. When resume training from a checkpoint, it's better to use a different
# seed, otherwise the sampled data will be exactly the same as before resuming, which will
# cause less unique data items sampled during the entire training.
# Use of different seed values might affect the final training result, since not all data items
# are used during training on ScanNet. (60M pairs of images sampled during traing from 230M pairs in total.)
_CN.TRAINER.SEED = 66


def get_cfg_defaults():
    """Get a yacs CfgNode object with default values for my_project."""
    # Return a clone so that the defaults will not be altered
    # This is for the "local variable" use pattern
    return _CN.clone()