Spaces:
Running
Running
File size: 15,296 Bytes
a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
import numpy as np
import copy
import cv2
import h5py
import math
from tqdm import tqdm
import torch
from torch.nn.functional import pixel_shuffle, softmax
from torch.utils.data import DataLoader
from kornia.geometry import warp_perspective
from .dataset.dataset_util import get_dataset
from .model.model_util import get_model
from .misc.train_utils import get_latest_checkpoint
from .train import convert_junc_predictions
from .dataset.transforms.homographic_transforms import sample_homography
def restore_weights(model, state_dict):
"""Restore weights in compatible mode."""
# Try to directly load state dict
try:
model.load_state_dict(state_dict)
except:
err = model.load_state_dict(state_dict, strict=False)
# missing keys are those in model but not in state_dict
missing_keys = err.missing_keys
# Unexpected keys are those in state_dict but not in model
unexpected_keys = err.unexpected_keys
# Load mismatched keys manually
model_dict = model.state_dict()
for idx, key in enumerate(missing_keys):
dict_keys = [_ for _ in unexpected_keys if not "tracked" in _]
model_dict[key] = state_dict[dict_keys[idx]]
model.load_state_dict(model_dict)
return model
def get_padded_filename(num_pad, idx):
"""Get the filename padded with 0."""
file_len = len("%d" % (idx))
filename = "0" * (num_pad - file_len) + "%d" % (idx)
return filename
def export_predictions(args, dataset_cfg, model_cfg, output_path, export_dataset_mode):
"""Export predictions."""
# Get the test configuration
test_cfg = model_cfg["test"]
# Create the dataset and dataloader based on the export_dataset_mode
print("\t Initializing dataset and dataloader")
batch_size = 4
export_dataset, collate_fn = get_dataset(export_dataset_mode, dataset_cfg)
export_loader = DataLoader(
export_dataset,
batch_size=batch_size,
num_workers=test_cfg.get("num_workers", 4),
shuffle=False,
pin_memory=False,
collate_fn=collate_fn,
)
print("\t Successfully intialized dataset and dataloader.")
# Initialize model and load the checkpoint
model = get_model(model_cfg, mode="test")
checkpoint = get_latest_checkpoint(args.resume_path, args.checkpoint_name)
model = restore_weights(model, checkpoint["model_state_dict"])
model = model.cuda()
model.eval()
print("\t Successfully initialized model")
# Start the export process
print("[Info] Start exporting predictions")
output_dataset_path = output_path + ".h5"
filename_idx = 0
with h5py.File(output_dataset_path, "w", libver="latest", swmr=True) as f:
# Iterate through all the data in dataloader
for data in tqdm(export_loader, ascii=True):
# Fetch the data
junc_map = data["junction_map"]
heatmap = data["heatmap"]
valid_mask = data["valid_mask"]
input_images = data["image"].cuda()
# Run the forward pass
with torch.no_grad():
outputs = model(input_images)
# Convert predictions
junc_np = convert_junc_predictions(
outputs["junctions"],
model_cfg["grid_size"],
model_cfg["detection_thresh"],
300,
)
junc_map_np = junc_map.numpy().transpose(0, 2, 3, 1)
heatmap_np = (
softmax(outputs["heatmap"].detach(), dim=1)
.cpu()
.numpy()
.transpose(0, 2, 3, 1)
)
heatmap_gt_np = heatmap.numpy().transpose(0, 2, 3, 1)
valid_mask_np = valid_mask.numpy().transpose(0, 2, 3, 1)
# Data entries to save
current_batch_size = input_images.shape[0]
for batch_idx in range(current_batch_size):
output_data = {
"image": input_images.cpu()
.numpy()
.transpose(0, 2, 3, 1)[batch_idx],
"junc_gt": junc_map_np[batch_idx],
"junc_pred": junc_np["junc_pred"][batch_idx],
"junc_pred_nms": junc_np["junc_pred_nms"][batch_idx].astype(
np.float32
),
"heatmap_gt": heatmap_gt_np[batch_idx],
"heatmap_pred": heatmap_np[batch_idx],
"valid_mask": valid_mask_np[batch_idx],
"junc_points": data["junctions"][batch_idx]
.numpy()[0]
.round()
.astype(np.int32),
"line_map": data["line_map"][batch_idx].numpy()[0].astype(np.int32),
}
# Save data to h5 dataset
num_pad = math.ceil(math.log10(len(export_loader))) + 1
output_key = get_padded_filename(num_pad, filename_idx)
f_group = f.create_group(output_key)
# Store data
for key, output_data in output_data.items():
f_group.create_dataset(key, data=output_data, compression="gzip")
filename_idx += 1
def export_homograpy_adaptation(
args, dataset_cfg, model_cfg, output_path, export_dataset_mode, device
):
"""Export homography adaptation results."""
# Check if the export_dataset_mode is supported
supported_modes = ["train", "test"]
if not export_dataset_mode in supported_modes:
raise ValueError("[Error] The specified export_dataset_mode is not supported.")
# Get the test configuration
test_cfg = model_cfg["test"]
# Get the homography adaptation configurations
homography_cfg = dataset_cfg.get("homography_adaptation", None)
if homography_cfg is None:
raise ValueError("[Error] Empty homography_adaptation entry in config.")
# Create the dataset and dataloader based on the export_dataset_mode
print("\t Initializing dataset and dataloader")
batch_size = args.export_batch_size
export_dataset, collate_fn = get_dataset(export_dataset_mode, dataset_cfg)
export_loader = DataLoader(
export_dataset,
batch_size=batch_size,
num_workers=test_cfg.get("num_workers", 4),
shuffle=False,
pin_memory=False,
collate_fn=collate_fn,
)
print("\t Successfully intialized dataset and dataloader.")
# Initialize model and load the checkpoint
model = get_model(model_cfg, mode="test")
checkpoint = get_latest_checkpoint(args.resume_path, args.checkpoint_name, device)
model = restore_weights(model, checkpoint["model_state_dict"])
model = model.to(device).eval()
print("\t Successfully initialized model")
# Start the export process
print("[Info] Start exporting predictions")
output_dataset_path = output_path + ".h5"
with h5py.File(output_dataset_path, "w", libver="latest") as f:
f.swmr_mode = True
for _, data in enumerate(tqdm(export_loader, ascii=True)):
input_images = data["image"].to(device)
file_keys = data["file_key"]
batch_size = input_images.shape[0]
# Run the homograpy adaptation
outputs = homography_adaptation(
input_images, model, model_cfg["grid_size"], homography_cfg
)
# Save the entries
for batch_idx in range(batch_size):
# Get the save key
save_key = file_keys[batch_idx]
output_data = {
"image": input_images.cpu()
.numpy()
.transpose(0, 2, 3, 1)[batch_idx],
"junc_prob_mean": outputs["junc_probs_mean"]
.cpu()
.numpy()
.transpose(0, 2, 3, 1)[batch_idx],
"junc_prob_max": outputs["junc_probs_max"]
.cpu()
.numpy()
.transpose(0, 2, 3, 1)[batch_idx],
"junc_count": outputs["junc_counts"]
.cpu()
.numpy()
.transpose(0, 2, 3, 1)[batch_idx],
"heatmap_prob_mean": outputs["heatmap_probs_mean"]
.cpu()
.numpy()
.transpose(0, 2, 3, 1)[batch_idx],
"heatmap_prob_max": outputs["heatmap_probs_max"]
.cpu()
.numpy()
.transpose(0, 2, 3, 1)[batch_idx],
"heatmap_cout": outputs["heatmap_counts"]
.cpu()
.numpy()
.transpose(0, 2, 3, 1)[batch_idx],
}
# Create group and write data
f_group = f.create_group(save_key)
for key, output_data in output_data.items():
f_group.create_dataset(key, data=output_data, compression="gzip")
def homography_adaptation(input_images, model, grid_size, homography_cfg):
"""The homography adaptation process.
Arguments:
input_images: The images to be evaluated.
model: The pytorch model in evaluation mode.
grid_size: Grid size of the junction decoder.
homography_cfg: Homography adaptation configurations.
"""
# Get the device of the current model
device = next(model.parameters()).device
# Define some constants and placeholder
batch_size, _, H, W = input_images.shape
num_iter = homography_cfg["num_iter"]
junc_probs = torch.zeros([batch_size, num_iter, H, W], device=device)
junc_counts = torch.zeros([batch_size, 1, H, W], device=device)
heatmap_probs = torch.zeros([batch_size, num_iter, H, W], device=device)
heatmap_counts = torch.zeros([batch_size, 1, H, W], device=device)
margin = homography_cfg["valid_border_margin"]
# Keep a config with no artifacts
homography_cfg_no_artifacts = copy.copy(homography_cfg["homographies"])
homography_cfg_no_artifacts["allow_artifacts"] = False
for idx in range(num_iter):
if idx <= num_iter // 5:
# Ensure that 20% of the homographies have no artifact
H_mat_lst = [
sample_homography([H, W], **homography_cfg_no_artifacts)[0][None]
for _ in range(batch_size)
]
else:
H_mat_lst = [
sample_homography([H, W], **homography_cfg["homographies"])[0][None]
for _ in range(batch_size)
]
H_mats = np.concatenate(H_mat_lst, axis=0)
H_tensor = torch.tensor(H_mats, dtype=torch.float, device=device)
H_inv_tensor = torch.inverse(H_tensor)
# Perform the homography warp
images_warped = warp_perspective(
input_images, H_tensor, (H, W), flags="bilinear"
)
# Warp the mask
masks_junc_warped = warp_perspective(
torch.ones([batch_size, 1, H, W], device=device),
H_tensor,
(H, W),
flags="nearest",
)
masks_heatmap_warped = warp_perspective(
torch.ones([batch_size, 1, H, W], device=device),
H_tensor,
(H, W),
flags="nearest",
)
# Run the network forward pass
with torch.no_grad():
outputs = model(images_warped)
# Unwarp and mask the junction prediction
junc_prob_warped = pixel_shuffle(
softmax(outputs["junctions"], dim=1)[:, :-1, :, :], grid_size
)
junc_prob = warp_perspective(
junc_prob_warped, H_inv_tensor, (H, W), flags="bilinear"
)
# Create the out of boundary mask
out_boundary_mask = warp_perspective(
torch.ones([batch_size, 1, H, W], device=device),
H_inv_tensor,
(H, W),
flags="nearest",
)
out_boundary_mask = adjust_border(out_boundary_mask, device, margin)
junc_prob = junc_prob * out_boundary_mask
junc_count = warp_perspective(
masks_junc_warped * out_boundary_mask, H_inv_tensor, (H, W), flags="nearest"
)
# Unwarp the mask and heatmap prediction
# Always fetch only one channel
if outputs["heatmap"].shape[1] == 2:
# Convert to single channel directly from here
heatmap_prob_warped = softmax(outputs["heatmap"], dim=1)[:, 1:, :, :]
else:
heatmap_prob_warped = torch.sigmoid(outputs["heatmap"])
heatmap_prob_warped = heatmap_prob_warped * masks_heatmap_warped
heatmap_prob = warp_perspective(
heatmap_prob_warped, H_inv_tensor, (H, W), flags="bilinear"
)
heatmap_count = warp_perspective(
masks_heatmap_warped, H_inv_tensor, (H, W), flags="nearest"
)
# Record the results
junc_probs[:, idx : idx + 1, :, :] = junc_prob
heatmap_probs[:, idx : idx + 1, :, :] = heatmap_prob
junc_counts += junc_count
heatmap_counts += heatmap_count
# Perform the accumulation operation
if homography_cfg["min_counts"] > 0:
min_counts = homography_cfg["min_counts"]
junc_count_mask = junc_counts < min_counts
heatmap_count_mask = heatmap_counts < min_counts
junc_counts[junc_count_mask] = 0
heatmap_counts[heatmap_count_mask] = 0
else:
junc_count_mask = np.zeros_like(junc_counts, dtype=bool)
heatmap_count_mask = np.zeros_like(heatmap_counts, dtype=bool)
# Compute the mean accumulation
junc_probs_mean = torch.sum(junc_probs, dim=1, keepdim=True) / junc_counts
junc_probs_mean[junc_count_mask] = 0.0
heatmap_probs_mean = torch.sum(heatmap_probs, dim=1, keepdim=True) / heatmap_counts
heatmap_probs_mean[heatmap_count_mask] = 0.0
# Compute the max accumulation
junc_probs_max = torch.max(junc_probs, dim=1, keepdim=True)[0]
junc_probs_max[junc_count_mask] = 0.0
heatmap_probs_max = torch.max(heatmap_probs, dim=1, keepdim=True)[0]
heatmap_probs_max[heatmap_count_mask] = 0.0
return {
"junc_probs_mean": junc_probs_mean,
"junc_probs_max": junc_probs_max,
"junc_counts": junc_counts,
"heatmap_probs_mean": heatmap_probs_mean,
"heatmap_probs_max": heatmap_probs_max,
"heatmap_counts": heatmap_counts,
}
def adjust_border(input_masks, device, margin=3):
"""Adjust the border of the counts and valid_mask."""
# Convert the mask to numpy array
dtype = input_masks.dtype
input_masks = np.squeeze(input_masks.cpu().numpy(), axis=1)
erosion_kernel = cv2.getStructuringElement(
cv2.MORPH_ELLIPSE, (margin * 2, margin * 2)
)
batch_size = input_masks.shape[0]
output_mask_lst = []
# Erode all the masks
for i in range(batch_size):
output_mask = cv2.erode(input_masks[i, ...], erosion_kernel)
output_mask_lst.append(
torch.tensor(output_mask, dtype=dtype, device=device)[None]
)
# Concat back along the batch dimension.
output_masks = torch.cat(output_mask_lst, dim=0)
return output_masks.unsqueeze(dim=1)
|