File size: 1,731 Bytes
437b5f6
 
 
 
 
 
 
 
 
 
 
4c12b36
 
 
 
 
 
 
437b5f6
4c12b36
437b5f6
 
 
4c12b36
437b5f6
 
 
 
 
 
 
4c12b36
 
437b5f6
 
4c12b36
 
 
437b5f6
 
 
4c12b36
437b5f6
 
 
 
4c12b36
 
 
437b5f6
4c12b36
437b5f6
 
 
 
4c12b36
437b5f6
 
4c12b36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use

import pdb
import torch.nn as nn
import torch.nn.functional as F

from nets.ap_loss import APLoss


class PixelAPLoss(nn.Module):
    """Computes the pixel-wise AP loss:
    Given two images and ground-truth optical flow, computes the AP per pixel.

    feat1:  (B, C, H, W)   pixel-wise features extracted from img1
    feat2:  (B, C, H, W)   pixel-wise features extracted from img2
    aflow:  (B, 2, H, W)   absolute flow: aflow[...,y1,x1] = x2,y2
    """

    def __init__(self, sampler, nq=20):
        nn.Module.__init__(self)
        self.aploss = APLoss(nq, min=0, max=1, euc=False)
        self.name = "pixAP"
        self.sampler = sampler

    def loss_from_ap(self, ap, rel):
        return 1 - ap

    def forward(self, descriptors, aflow, **kw):
        # subsample things
        scores, gt, msk, qconf = self.sampler(descriptors, kw.get("reliability"), aflow)

        # compute pixel-wise AP
        n = qconf.numel()
        if n == 0:
            return 0
        scores, gt = scores.view(n, -1), gt.view(n, -1)
        ap = self.aploss(scores, gt).view(msk.shape)

        pixel_loss = self.loss_from_ap(ap, qconf)

        loss = pixel_loss[msk].mean()
        return loss


class ReliabilityLoss(PixelAPLoss):
    """same than PixelAPLoss, but also train a pixel-wise confidence
    that this pixel is going to have a good AP.
    """

    def __init__(self, sampler, base=0.5, **kw):
        PixelAPLoss.__init__(self, sampler, **kw)
        assert 0 <= base < 1
        self.base = base
        self.name = "reliability"

    def loss_from_ap(self, ap, rel):
        return 1 - ap * rel - (1 - rel) * self.base