Spaces:
Running
Running
File size: 10,232 Bytes
4c88343 57c1094 4c88343 57c1094 4c88343 57c1094 4c88343 57c1094 4c88343 57c1094 4c88343 57c1094 4c88343 57c1094 4c88343 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import argparse
import contextlib
import io
import sys
from pathlib import Path
from typing import Any, Dict, List, Optional
import numpy as np
import pycolmap
from tqdm import tqdm
from . import logger
from .utils.database import COLMAPDatabase
from .utils.geometry import compute_epipolar_errors
from .utils.io import get_keypoints, get_matches
from .utils.parsers import parse_retrieval
class OutputCapture:
def __init__(self, verbose: bool):
self.verbose = verbose
def __enter__(self):
if not self.verbose:
self.capture = contextlib.redirect_stdout(io.StringIO())
self.out = self.capture.__enter__()
def __exit__(self, exc_type, *args):
if not self.verbose:
self.capture.__exit__(exc_type, *args)
if exc_type is not None:
logger.error("Failed with output:\n%s", self.out.getvalue())
sys.stdout.flush()
def create_db_from_model(
reconstruction: pycolmap.Reconstruction, database_path: Path
) -> Dict[str, int]:
if database_path.exists():
logger.warning("The database already exists, deleting it.")
database_path.unlink()
db = COLMAPDatabase.connect(database_path)
db.create_tables()
for i, camera in reconstruction.cameras.items():
db.add_camera(
camera.model.value,
camera.width,
camera.height,
camera.params,
camera_id=i,
prior_focal_length=True,
)
for i, image in reconstruction.images.items():
db.add_image(image.name, image.camera_id, image_id=i)
db.commit()
db.close()
return {image.name: i for i, image in reconstruction.images.items()}
def import_features(
image_ids: Dict[str, int], database_path: Path, features_path: Path
):
logger.info("Importing features into the database...")
db = COLMAPDatabase.connect(database_path)
for image_name, image_id in tqdm(image_ids.items()):
keypoints = get_keypoints(features_path, image_name)
keypoints += 0.5 # COLMAP origin
db.add_keypoints(image_id, keypoints)
db.commit()
db.close()
def import_matches(
image_ids: Dict[str, int],
database_path: Path,
pairs_path: Path,
matches_path: Path,
min_match_score: Optional[float] = None,
skip_geometric_verification: bool = False,
):
logger.info("Importing matches into the database...")
with open(str(pairs_path), "r") as f:
pairs = [p.split() for p in f.readlines()]
db = COLMAPDatabase.connect(database_path)
matched = set()
for name0, name1 in tqdm(pairs):
id0, id1 = image_ids[name0], image_ids[name1]
if len({(id0, id1), (id1, id0)} & matched) > 0:
continue
matches, scores = get_matches(matches_path, name0, name1)
if min_match_score:
matches = matches[scores > min_match_score]
db.add_matches(id0, id1, matches)
matched |= {(id0, id1), (id1, id0)}
if skip_geometric_verification:
db.add_two_view_geometry(id0, id1, matches)
db.commit()
db.close()
def estimation_and_geometric_verification(
database_path: Path, pairs_path: Path, verbose: bool = False
):
logger.info("Performing geometric verification of the matches...")
with OutputCapture(verbose):
with pycolmap.ostream():
pycolmap.verify_matches(
database_path,
pairs_path,
options=dict(
ransac=dict(max_num_trials=20000, min_inlier_ratio=0.1)
),
)
def geometric_verification(
image_ids: Dict[str, int],
reference: pycolmap.Reconstruction,
database_path: Path,
features_path: Path,
pairs_path: Path,
matches_path: Path,
max_error: float = 4.0,
):
logger.info("Performing geometric verification of the matches...")
pairs = parse_retrieval(pairs_path)
db = COLMAPDatabase.connect(database_path)
inlier_ratios = []
matched = set()
for name0 in tqdm(pairs):
id0 = image_ids[name0]
image0 = reference.images[id0]
cam0 = reference.cameras[image0.camera_id]
kps0, noise0 = get_keypoints(
features_path, name0, return_uncertainty=True
)
noise0 = 1.0 if noise0 is None else noise0
if len(kps0) > 0:
kps0 = np.stack(cam0.cam_from_img(kps0))
else:
kps0 = np.zeros((0, 2))
for name1 in pairs[name0]:
id1 = image_ids[name1]
image1 = reference.images[id1]
cam1 = reference.cameras[image1.camera_id]
kps1, noise1 = get_keypoints(
features_path, name1, return_uncertainty=True
)
noise1 = 1.0 if noise1 is None else noise1
if len(kps1) > 0:
kps1 = np.stack(cam1.cam_from_img(kps1))
else:
kps1 = np.zeros((0, 2))
matches = get_matches(matches_path, name0, name1)[0]
if len({(id0, id1), (id1, id0)} & matched) > 0:
continue
matched |= {(id0, id1), (id1, id0)}
if matches.shape[0] == 0:
db.add_two_view_geometry(id0, id1, matches)
continue
cam1_from_cam0 = (
image1.cam_from_world * image0.cam_from_world.inverse()
)
errors0, errors1 = compute_epipolar_errors(
cam1_from_cam0, kps0[matches[:, 0]], kps1[matches[:, 1]]
)
valid_matches = np.logical_and(
errors0 <= cam0.cam_from_img_threshold(noise0 * max_error),
errors1 <= cam1.cam_from_img_threshold(noise1 * max_error),
)
# TODO: We could also add E to the database, but we need
# to reverse the transformations if id0 > id1 in utils/database.py.
db.add_two_view_geometry(id0, id1, matches[valid_matches, :])
inlier_ratios.append(np.mean(valid_matches))
logger.info(
"mean/med/min/max valid matches %.2f/%.2f/%.2f/%.2f%%.",
np.mean(inlier_ratios) * 100,
np.median(inlier_ratios) * 100,
np.min(inlier_ratios) * 100,
np.max(inlier_ratios) * 100,
)
db.commit()
db.close()
def run_triangulation(
model_path: Path,
database_path: Path,
image_dir: Path,
reference_model: pycolmap.Reconstruction,
verbose: bool = False,
options: Optional[Dict[str, Any]] = None,
) -> pycolmap.Reconstruction:
model_path.mkdir(parents=True, exist_ok=True)
logger.info("Running 3D triangulation...")
if options is None:
options = {}
with OutputCapture(verbose):
with pycolmap.ostream():
reconstruction = pycolmap.triangulate_points(
reference_model,
database_path,
image_dir,
model_path,
options=options,
)
return reconstruction
def main(
sfm_dir: Path,
reference_model: Path,
image_dir: Path,
pairs: Path,
features: Path,
matches: Path,
skip_geometric_verification: bool = False,
estimate_two_view_geometries: bool = False,
min_match_score: Optional[float] = None,
verbose: bool = False,
mapper_options: Optional[Dict[str, Any]] = None,
) -> pycolmap.Reconstruction:
assert reference_model.exists(), reference_model
assert features.exists(), features
assert pairs.exists(), pairs
assert matches.exists(), matches
sfm_dir.mkdir(parents=True, exist_ok=True)
database = sfm_dir / "database.db"
reference = pycolmap.Reconstruction(reference_model)
image_ids = create_db_from_model(reference, database)
import_features(image_ids, database, features)
import_matches(
image_ids,
database,
pairs,
matches,
min_match_score,
skip_geometric_verification,
)
if not skip_geometric_verification:
if estimate_two_view_geometries:
estimation_and_geometric_verification(database, pairs, verbose)
else:
geometric_verification(
image_ids, reference, database, features, pairs, matches
)
reconstruction = run_triangulation(
sfm_dir, database, image_dir, reference, verbose, mapper_options
)
logger.info(
"Finished the triangulation with statistics:\n%s",
reconstruction.summary(),
)
return reconstruction
def parse_option_args(args: List[str], default_options) -> Dict[str, Any]:
options = {}
for arg in args:
idx = arg.find("=")
if idx == -1:
raise ValueError("Options format: key1=value1 key2=value2 etc.")
key, value = arg[:idx], arg[idx + 1 :]
if not hasattr(default_options, key):
raise ValueError(
f'Unknown option "{key}", allowed options and default values'
f" for {default_options.summary()}"
)
value = eval(value)
target_type = type(getattr(default_options, key))
if not isinstance(value, target_type):
raise ValueError(
f'Incorrect type for option "{key}":'
f" {type(value)} vs {target_type}"
)
options[key] = value
return options
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--sfm_dir", type=Path, required=True)
parser.add_argument("--reference_sfm_model", type=Path, required=True)
parser.add_argument("--image_dir", type=Path, required=True)
parser.add_argument("--pairs", type=Path, required=True)
parser.add_argument("--features", type=Path, required=True)
parser.add_argument("--matches", type=Path, required=True)
parser.add_argument("--skip_geometric_verification", action="store_true")
parser.add_argument("--min_match_score", type=float)
parser.add_argument("--verbose", action="store_true")
args = parser.parse_args().__dict__
mapper_options = parse_option_args(
args.pop("mapper_options"), pycolmap.IncrementalMapperOptions()
)
main(**args, mapper_options=mapper_options)
|