Spaces:
Running
Running
File size: 1,736 Bytes
c0283b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import torch
def extract_patches(
tensor: torch.Tensor,
required_corners: torch.Tensor,
ps: int,
) -> torch.Tensor:
c, h, w = tensor.shape
corner = required_corners.long()
corner[:, 0] = corner[:, 0].clamp(min=0, max=w - 1 - ps)
corner[:, 1] = corner[:, 1].clamp(min=0, max=h - 1 - ps)
offset = torch.arange(0, ps)
kw = {"indexing": "ij"} if torch.__version__ >= "1.10" else {}
x, y = torch.meshgrid(offset, offset, **kw)
patches = torch.stack((x, y)).permute(2, 1, 0).unsqueeze(2)
patches = patches.to(corner) + corner[None, None]
pts = patches.reshape(-1, 2)
sampled = tensor.permute(1, 2, 0)[tuple(pts.T)[::-1]]
sampled = sampled.reshape(ps, ps, -1, c)
assert sampled.shape[:3] == patches.shape[:3]
return sampled.permute(2, 3, 0, 1), corner.float()
def batch_extract_patches(tensor: torch.Tensor, kpts: torch.Tensor, ps: int):
b, c, h, w = tensor.shape
b, n, _ = kpts.shape
out = torch.zeros((b, n, c, ps, ps), dtype=tensor.dtype, device=tensor.device)
corners = torch.zeros((b, n, 2), dtype=tensor.dtype, device=tensor.device)
for i in range(b):
out[i], corners[i] = extract_patches(tensor[i], kpts[i] - ps / 2 - 1, ps)
return out, corners
def draw_image_patches(img, patches, corners):
b, c, h, w = img.shape
b, n, c, p, p = patches.shape
b, n, _ = corners.shape
for i in range(b):
for k in range(n):
y, x = corners[i, k]
img[i, :, x : x + p, y : y + p] = patches[i, k]
def build_heatmap(img, patches, corners):
hmap = torch.zeros_like(img)
draw_image_patches(hmap, patches, corners.long())
hmap = hmap.squeeze(1)
return hmap, (hmap > 0.0).float() # bxhxw
|