Spaces:
Running
Running
File size: 26,763 Bytes
2eaeef9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
# BSD 3-Clause License
# Copyright (c) 2022, Zhao Xiaoming
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# Authors:
# Xiaoming Zhao, Xingming Wu, Weihai Chen, Peter C.Y. Chen, Qingsong Xu, and Zhengguo Li
# Code from https://github.com/Shiaoming/ALIKED
from typing import Callable, Optional
import torch
import torch.nn.functional as F
import torchvision
from kornia.color import grayscale_to_rgb
from torch import nn
from torch.nn.modules.utils import _pair
from torchvision.models import resnet
from .utils import Extractor
def get_patches(
tensor: torch.Tensor, required_corners: torch.Tensor, ps: int
) -> torch.Tensor:
c, h, w = tensor.shape
corner = (required_corners - ps / 2 + 1).long()
corner[:, 0] = corner[:, 0].clamp(min=0, max=w - 1 - ps)
corner[:, 1] = corner[:, 1].clamp(min=0, max=h - 1 - ps)
offset = torch.arange(0, ps)
kw = {"indexing": "ij"} if torch.__version__ >= "1.10" else {}
x, y = torch.meshgrid(offset, offset, **kw)
patches = torch.stack((x, y)).permute(2, 1, 0).unsqueeze(2)
patches = patches.to(corner) + corner[None, None]
pts = patches.reshape(-1, 2)
sampled = tensor.permute(1, 2, 0)[tuple(pts.T)[::-1]]
sampled = sampled.reshape(ps, ps, -1, c)
assert sampled.shape[:3] == patches.shape[:3]
return sampled.permute(2, 3, 0, 1)
def simple_nms(scores: torch.Tensor, nms_radius: int):
"""Fast Non-maximum suppression to remove nearby points"""
zeros = torch.zeros_like(scores)
max_mask = scores == torch.nn.functional.max_pool2d(
scores, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius
)
for _ in range(2):
supp_mask = (
torch.nn.functional.max_pool2d(
max_mask.float(),
kernel_size=nms_radius * 2 + 1,
stride=1,
padding=nms_radius,
)
> 0
)
supp_scores = torch.where(supp_mask, zeros, scores)
new_max_mask = supp_scores == torch.nn.functional.max_pool2d(
supp_scores, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius
)
max_mask = max_mask | (new_max_mask & (~supp_mask))
return torch.where(max_mask, scores, zeros)
class DKD(nn.Module):
def __init__(
self,
radius: int = 2,
top_k: int = 0,
scores_th: float = 0.2,
n_limit: int = 20000,
):
"""
Args:
radius: soft detection radius, kernel size is (2 * radius + 1)
top_k: top_k > 0: return top k keypoints
scores_th: top_k <= 0 threshold mode:
scores_th > 0: return keypoints with scores>scores_th
else: return keypoints with scores > scores.mean()
n_limit: max number of keypoint in threshold mode
"""
super().__init__()
self.radius = radius
self.top_k = top_k
self.scores_th = scores_th
self.n_limit = n_limit
self.kernel_size = 2 * self.radius + 1
self.temperature = 0.1 # tuned temperature
self.unfold = nn.Unfold(kernel_size=self.kernel_size, padding=self.radius)
# local xy grid
x = torch.linspace(-self.radius, self.radius, self.kernel_size)
# (kernel_size*kernel_size) x 2 : (w,h)
kw = {"indexing": "ij"} if torch.__version__ >= "1.10" else {}
self.hw_grid = (
torch.stack(torch.meshgrid([x, x], **kw)).view(2, -1).t()[:, [1, 0]]
)
def forward(
self,
scores_map: torch.Tensor,
sub_pixel: bool = True,
image_size: Optional[torch.Tensor] = None,
):
"""
:param scores_map: Bx1xHxW
:param descriptor_map: BxCxHxW
:param sub_pixel: whether to use sub-pixel keypoint detection
:return: kpts: list[Nx2,...]; kptscores: list[N,....] normalised position: -1~1
"""
b, c, h, w = scores_map.shape
scores_nograd = scores_map.detach()
nms_scores = simple_nms(scores_nograd, self.radius)
# remove border
nms_scores[:, :, : self.radius, :] = 0
nms_scores[:, :, :, : self.radius] = 0
if image_size is not None:
for i in range(scores_map.shape[0]):
w, h = image_size[i].long()
nms_scores[i, :, h.item() - self.radius :, :] = 0
nms_scores[i, :, :, w.item() - self.radius :] = 0
else:
nms_scores[:, :, -self.radius :, :] = 0
nms_scores[:, :, :, -self.radius :] = 0
# detect keypoints without grad
if self.top_k > 0:
topk = torch.topk(nms_scores.view(b, -1), self.top_k)
indices_keypoints = [topk.indices[i] for i in range(b)] # B x top_k
else:
if self.scores_th > 0:
masks = nms_scores > self.scores_th
if masks.sum() == 0:
th = scores_nograd.reshape(b, -1).mean(dim=1) # th = self.scores_th
masks = nms_scores > th.reshape(b, 1, 1, 1)
else:
th = scores_nograd.reshape(b, -1).mean(dim=1) # th = self.scores_th
masks = nms_scores > th.reshape(b, 1, 1, 1)
masks = masks.reshape(b, -1)
indices_keypoints = [] # list, B x (any size)
scores_view = scores_nograd.reshape(b, -1)
for mask, scores in zip(masks, scores_view):
indices = mask.nonzero()[:, 0]
if len(indices) > self.n_limit:
kpts_sc = scores[indices]
sort_idx = kpts_sc.sort(descending=True)[1]
sel_idx = sort_idx[: self.n_limit]
indices = indices[sel_idx]
indices_keypoints.append(indices)
wh = torch.tensor([w - 1, h - 1], device=scores_nograd.device)
keypoints = []
scoredispersitys = []
kptscores = []
if sub_pixel:
# detect soft keypoints with grad backpropagation
patches = self.unfold(scores_map) # B x (kernel**2) x (H*W)
self.hw_grid = self.hw_grid.to(scores_map) # to device
for b_idx in range(b):
patch = patches[b_idx].t() # (H*W) x (kernel**2)
indices_kpt = indices_keypoints[
b_idx
] # one dimension vector, say its size is M
patch_scores = patch[indices_kpt] # M x (kernel**2)
keypoints_xy_nms = torch.stack(
[indices_kpt % w, torch.div(indices_kpt, w, rounding_mode="trunc")],
dim=1,
) # Mx2
# max is detached to prevent undesired backprop loops in the graph
max_v = patch_scores.max(dim=1).values.detach()[:, None]
x_exp = (
(patch_scores - max_v) / self.temperature
).exp() # M * (kernel**2), in [0, 1]
# \frac{ \sum{(i,j) \times \exp(x/T)} }{ \sum{\exp(x/T)} }
xy_residual = (
x_exp @ self.hw_grid / x_exp.sum(dim=1)[:, None]
) # Soft-argmax, Mx2
hw_grid_dist2 = (
torch.norm(
(self.hw_grid[None, :, :] - xy_residual[:, None, :])
/ self.radius,
dim=-1,
)
** 2
)
scoredispersity = (x_exp * hw_grid_dist2).sum(dim=1) / x_exp.sum(dim=1)
# compute result keypoints
keypoints_xy = keypoints_xy_nms + xy_residual
keypoints_xy = keypoints_xy / wh * 2 - 1 # (w,h) -> (-1~1,-1~1)
kptscore = torch.nn.functional.grid_sample(
scores_map[b_idx].unsqueeze(0),
keypoints_xy.view(1, 1, -1, 2),
mode="bilinear",
align_corners=True,
)[
0, 0, 0, :
] # CxN
keypoints.append(keypoints_xy)
scoredispersitys.append(scoredispersity)
kptscores.append(kptscore)
else:
for b_idx in range(b):
indices_kpt = indices_keypoints[
b_idx
] # one dimension vector, say its size is M
# To avoid warning: UserWarning: __floordiv__ is deprecated
keypoints_xy_nms = torch.stack(
[indices_kpt % w, torch.div(indices_kpt, w, rounding_mode="trunc")],
dim=1,
) # Mx2
keypoints_xy = keypoints_xy_nms / wh * 2 - 1 # (w,h) -> (-1~1,-1~1)
kptscore = torch.nn.functional.grid_sample(
scores_map[b_idx].unsqueeze(0),
keypoints_xy.view(1, 1, -1, 2),
mode="bilinear",
align_corners=True,
)[
0, 0, 0, :
] # CxN
keypoints.append(keypoints_xy)
scoredispersitys.append(kptscore) # for jit.script compatability
kptscores.append(kptscore)
return keypoints, scoredispersitys, kptscores
class InputPadder(object):
"""Pads images such that dimensions are divisible by 8"""
def __init__(self, h: int, w: int, divis_by: int = 8):
self.ht = h
self.wd = w
pad_ht = (((self.ht // divis_by) + 1) * divis_by - self.ht) % divis_by
pad_wd = (((self.wd // divis_by) + 1) * divis_by - self.wd) % divis_by
self._pad = [
pad_wd // 2,
pad_wd - pad_wd // 2,
pad_ht // 2,
pad_ht - pad_ht // 2,
]
def pad(self, x: torch.Tensor):
assert x.ndim == 4
return F.pad(x, self._pad, mode="replicate")
def unpad(self, x: torch.Tensor):
assert x.ndim == 4
ht = x.shape[-2]
wd = x.shape[-1]
c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]]
return x[..., c[0] : c[1], c[2] : c[3]]
class DeformableConv2d(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
bias=False,
mask=False,
):
super(DeformableConv2d, self).__init__()
self.padding = padding
self.mask = mask
self.channel_num = (
3 * kernel_size * kernel_size if mask else 2 * kernel_size * kernel_size
)
self.offset_conv = nn.Conv2d(
in_channels,
self.channel_num,
kernel_size=kernel_size,
stride=stride,
padding=self.padding,
bias=True,
)
self.regular_conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=self.padding,
bias=bias,
)
def forward(self, x):
h, w = x.shape[2:]
max_offset = max(h, w) / 4.0
out = self.offset_conv(x)
if self.mask:
o1, o2, mask = torch.chunk(out, 3, dim=1)
offset = torch.cat((o1, o2), dim=1)
mask = torch.sigmoid(mask)
else:
offset = out
mask = None
offset = offset.clamp(-max_offset, max_offset)
x = torchvision.ops.deform_conv2d(
input=x,
offset=offset,
weight=self.regular_conv.weight,
bias=self.regular_conv.bias,
padding=self.padding,
mask=mask,
)
return x
def get_conv(
inplanes,
planes,
kernel_size=3,
stride=1,
padding=1,
bias=False,
conv_type="conv",
mask=False,
):
if conv_type == "conv":
conv = nn.Conv2d(
inplanes,
planes,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=bias,
)
elif conv_type == "dcn":
conv = DeformableConv2d(
inplanes,
planes,
kernel_size=kernel_size,
stride=stride,
padding=_pair(padding),
bias=bias,
mask=mask,
)
else:
raise TypeError
return conv
class ConvBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
gate: Optional[Callable[..., nn.Module]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
conv_type: str = "conv",
mask: bool = False,
):
super().__init__()
if gate is None:
self.gate = nn.ReLU(inplace=True)
else:
self.gate = gate
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self.conv1 = get_conv(
in_channels, out_channels, kernel_size=3, conv_type=conv_type, mask=mask
)
self.bn1 = norm_layer(out_channels)
self.conv2 = get_conv(
out_channels, out_channels, kernel_size=3, conv_type=conv_type, mask=mask
)
self.bn2 = norm_layer(out_channels)
def forward(self, x):
x = self.gate(self.bn1(self.conv1(x))) # B x in_channels x H x W
x = self.gate(self.bn2(self.conv2(x))) # B x out_channels x H x W
return x
# modified based on torchvision\models\resnet.py#27->BasicBlock
class ResBlock(nn.Module):
expansion: int = 1
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
gate: Optional[Callable[..., nn.Module]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
conv_type: str = "conv",
mask: bool = False,
) -> None:
super(ResBlock, self).__init__()
if gate is None:
self.gate = nn.ReLU(inplace=True)
else:
self.gate = gate
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError("ResBlock only supports groups=1 and base_width=64")
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in ResBlock")
# Both self.conv1 and self.downsample layers
# downsample the input when stride != 1
self.conv1 = get_conv(
inplanes, planes, kernel_size=3, conv_type=conv_type, mask=mask
)
self.bn1 = norm_layer(planes)
self.conv2 = get_conv(
planes, planes, kernel_size=3, conv_type=conv_type, mask=mask
)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x: torch.Tensor) -> torch.Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.gate(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.gate(out)
return out
class SDDH(nn.Module):
def __init__(
self,
dims: int,
kernel_size: int = 3,
n_pos: int = 8,
gate=nn.ReLU(),
conv2D=False,
mask=False,
):
super(SDDH, self).__init__()
self.kernel_size = kernel_size
self.n_pos = n_pos
self.conv2D = conv2D
self.mask = mask
self.get_patches_func = get_patches
# estimate offsets
self.channel_num = 3 * n_pos if mask else 2 * n_pos
self.offset_conv = nn.Sequential(
nn.Conv2d(
dims,
self.channel_num,
kernel_size=kernel_size,
stride=1,
padding=0,
bias=True,
),
gate,
nn.Conv2d(
self.channel_num,
self.channel_num,
kernel_size=1,
stride=1,
padding=0,
bias=True,
),
)
# sampled feature conv
self.sf_conv = nn.Conv2d(
dims, dims, kernel_size=1, stride=1, padding=0, bias=False
)
# convM
if not conv2D:
# deformable desc weights
agg_weights = torch.nn.Parameter(torch.rand(n_pos, dims, dims))
self.register_parameter("agg_weights", agg_weights)
else:
self.convM = nn.Conv2d(
dims * n_pos, dims, kernel_size=1, stride=1, padding=0, bias=False
)
def forward(self, x, keypoints):
# x: [B,C,H,W]
# keypoints: list, [[N_kpts,2], ...] (w,h)
b, c, h, w = x.shape
wh = torch.tensor([[w - 1, h - 1]], device=x.device)
max_offset = max(h, w) / 4.0
offsets = []
descriptors = []
# get offsets for each keypoint
for ib in range(b):
xi, kptsi = x[ib], keypoints[ib]
kptsi_wh = (kptsi / 2 + 0.5) * wh
N_kpts = len(kptsi)
if self.kernel_size > 1:
patch = self.get_patches_func(
xi, kptsi_wh.long(), self.kernel_size
) # [N_kpts, C, K, K]
else:
kptsi_wh_long = kptsi_wh.long()
patch = (
xi[:, kptsi_wh_long[:, 1], kptsi_wh_long[:, 0]]
.permute(1, 0)
.reshape(N_kpts, c, 1, 1)
)
offset = self.offset_conv(patch).clamp(
-max_offset, max_offset
) # [N_kpts, 2*n_pos, 1, 1]
if self.mask:
offset = (
offset[:, :, 0, 0].view(N_kpts, 3, self.n_pos).permute(0, 2, 1)
) # [N_kpts, n_pos, 3]
offset = offset[:, :, :-1] # [N_kpts, n_pos, 2]
mask_weight = torch.sigmoid(offset[:, :, -1]) # [N_kpts, n_pos]
else:
offset = (
offset[:, :, 0, 0].view(N_kpts, 2, self.n_pos).permute(0, 2, 1)
) # [N_kpts, n_pos, 2]
offsets.append(offset) # for visualization
# get sample positions
pos = kptsi_wh.unsqueeze(1) + offset # [N_kpts, n_pos, 2]
pos = 2.0 * pos / wh[None] - 1
pos = pos.reshape(1, N_kpts * self.n_pos, 1, 2)
# sample features
features = F.grid_sample(
xi.unsqueeze(0), pos, mode="bilinear", align_corners=True
) # [1,C,(N_kpts*n_pos),1]
features = features.reshape(c, N_kpts, self.n_pos, 1).permute(
1, 0, 2, 3
) # [N_kpts, C, n_pos, 1]
if self.mask:
features = torch.einsum("ncpo,np->ncpo", features, mask_weight)
features = torch.selu_(self.sf_conv(features)).squeeze(
-1
) # [N_kpts, C, n_pos]
# convM
if not self.conv2D:
descs = torch.einsum(
"ncp,pcd->nd", features, self.agg_weights
) # [N_kpts, C]
else:
features = features.reshape(N_kpts, -1)[
:, :, None, None
] # [N_kpts, C*n_pos, 1, 1]
descs = self.convM(features).squeeze() # [N_kpts, C]
# normalize
descs = F.normalize(descs, p=2.0, dim=1)
descriptors.append(descs)
return descriptors, offsets
class ALIKED(Extractor):
default_conf = {
"model_name": "aliked-n16",
"max_num_keypoints": -1,
"detection_threshold": 0.2,
"nms_radius": 2,
}
checkpoint_url = "https://github.com/Shiaoming/ALIKED/raw/main/models/{}.pth"
n_limit_max = 20000
# c1, c2, c3, c4, dim, K, M
cfgs = {
"aliked-t16": [8, 16, 32, 64, 64, 3, 16],
"aliked-n16": [16, 32, 64, 128, 128, 3, 16],
"aliked-n16rot": [16, 32, 64, 128, 128, 3, 16],
"aliked-n32": [16, 32, 64, 128, 128, 3, 32],
}
preprocess_conf = {
"resize": 1024,
}
required_data_keys = ["image"]
def __init__(self, **conf):
super().__init__(**conf) # Update with default configuration.
conf = self.conf
c1, c2, c3, c4, dim, K, M = self.cfgs[conf.model_name]
conv_types = ["conv", "conv", "dcn", "dcn"]
conv2D = False
mask = False
# build model
self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2)
self.pool4 = nn.AvgPool2d(kernel_size=4, stride=4)
self.norm = nn.BatchNorm2d
self.gate = nn.SELU(inplace=True)
self.block1 = ConvBlock(3, c1, self.gate, self.norm, conv_type=conv_types[0])
self.block2 = self.get_resblock(c1, c2, conv_types[1], mask)
self.block3 = self.get_resblock(c2, c3, conv_types[2], mask)
self.block4 = self.get_resblock(c3, c4, conv_types[3], mask)
self.conv1 = resnet.conv1x1(c1, dim // 4)
self.conv2 = resnet.conv1x1(c2, dim // 4)
self.conv3 = resnet.conv1x1(c3, dim // 4)
self.conv4 = resnet.conv1x1(dim, dim // 4)
self.upsample2 = nn.Upsample(
scale_factor=2, mode="bilinear", align_corners=True
)
self.upsample4 = nn.Upsample(
scale_factor=4, mode="bilinear", align_corners=True
)
self.upsample8 = nn.Upsample(
scale_factor=8, mode="bilinear", align_corners=True
)
self.upsample32 = nn.Upsample(
scale_factor=32, mode="bilinear", align_corners=True
)
self.score_head = nn.Sequential(
resnet.conv1x1(dim, 8),
self.gate,
resnet.conv3x3(8, 4),
self.gate,
resnet.conv3x3(4, 4),
self.gate,
resnet.conv3x3(4, 1),
)
self.desc_head = SDDH(dim, K, M, gate=self.gate, conv2D=conv2D, mask=mask)
self.dkd = DKD(
radius=conf.nms_radius,
top_k=-1 if conf.detection_threshold > 0 else conf.max_num_keypoints,
scores_th=conf.detection_threshold,
n_limit=conf.max_num_keypoints
if conf.max_num_keypoints > 0
else self.n_limit_max,
)
state_dict = torch.hub.load_state_dict_from_url(
self.checkpoint_url.format(conf.model_name), map_location="cpu"
)
self.load_state_dict(state_dict, strict=True)
def get_resblock(self, c_in, c_out, conv_type, mask):
return ResBlock(
c_in,
c_out,
1,
nn.Conv2d(c_in, c_out, 1),
gate=self.gate,
norm_layer=self.norm,
conv_type=conv_type,
mask=mask,
)
def extract_dense_map(self, image):
# Pads images such that dimensions are divisible by
div_by = 2**5
padder = InputPadder(image.shape[-2], image.shape[-1], div_by)
image = padder.pad(image)
# ================================== feature encoder
x1 = self.block1(image) # B x c1 x H x W
x2 = self.pool2(x1)
x2 = self.block2(x2) # B x c2 x H/2 x W/2
x3 = self.pool4(x2)
x3 = self.block3(x3) # B x c3 x H/8 x W/8
x4 = self.pool4(x3)
x4 = self.block4(x4) # B x dim x H/32 x W/32
# ================================== feature aggregation
x1 = self.gate(self.conv1(x1)) # B x dim//4 x H x W
x2 = self.gate(self.conv2(x2)) # B x dim//4 x H//2 x W//2
x3 = self.gate(self.conv3(x3)) # B x dim//4 x H//8 x W//8
x4 = self.gate(self.conv4(x4)) # B x dim//4 x H//32 x W//32
x2_up = self.upsample2(x2) # B x dim//4 x H x W
x3_up = self.upsample8(x3) # B x dim//4 x H x W
x4_up = self.upsample32(x4) # B x dim//4 x H x W
x1234 = torch.cat([x1, x2_up, x3_up, x4_up], dim=1)
# ================================== score head
score_map = torch.sigmoid(self.score_head(x1234))
feature_map = torch.nn.functional.normalize(x1234, p=2, dim=1)
# Unpads images
feature_map = padder.unpad(feature_map)
score_map = padder.unpad(score_map)
return feature_map, score_map
def forward(self, data: dict) -> dict:
image = data["image"]
if image.shape[1] == 1:
image = grayscale_to_rgb(image)
feature_map, score_map = self.extract_dense_map(image)
keypoints, kptscores, scoredispersitys = self.dkd(
score_map, image_size=data.get("image_size")
)
descriptors, offsets = self.desc_head(feature_map, keypoints)
_, _, h, w = image.shape
wh = torch.tensor([w - 1, h - 1], device=image.device)
# no padding required
# we can set detection_threshold=-1 and conf.max_num_keypoints > 0
return {
"keypoints": wh * (torch.stack(keypoints) + 1) / 2.0, # B x N x 2
"descriptors": torch.stack(descriptors), # B x N x D
"keypoint_scores": torch.stack(kptscores), # B x N
}
|