File size: 9,192 Bytes
7a991bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Simple visloc script
# --------------------------------------------------------
import numpy as np
import random
import argparse
from tqdm import tqdm
import math

from dust3r.inference import inference
from dust3r.model import AsymmetricCroCo3DStereo
from dust3r.utils.geometry import find_reciprocal_matches, xy_grid, geotrf

from dust3r_visloc.datasets import *
from dust3r_visloc.localization import run_pnp
from dust3r_visloc.evaluation import get_pose_error, aggregate_stats, export_results


def get_args_parser():
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset", type=str, required=True, help="visloc dataset to eval")
    parser_weights = parser.add_mutually_exclusive_group(required=True)
    parser_weights.add_argument("--weights", type=str, help="path to the model weights", default=None)
    parser_weights.add_argument("--model_name", type=str, help="name of the model weights",
                                choices=["DUSt3R_ViTLarge_BaseDecoder_512_dpt",
                                         "DUSt3R_ViTLarge_BaseDecoder_512_linear",
                                         "DUSt3R_ViTLarge_BaseDecoder_224_linear"])
    parser.add_argument("--confidence_threshold", type=float, default=3.0,
                        help="confidence values higher than threshold are invalid")
    parser.add_argument("--device", type=str, default='cuda', help="pytorch device")
    parser.add_argument("--pnp_mode", type=str, default="cv2", choices=['cv2', 'poselib', 'pycolmap'],
                        help="pnp lib to use")
    parser_reproj = parser.add_mutually_exclusive_group()
    parser_reproj.add_argument("--reprojection_error", type=float, default=5.0, help="pnp reprojection error")
    parser_reproj.add_argument("--reprojection_error_diag_ratio", type=float, default=None,
                               help="pnp reprojection error as a ratio of the diagonal of the image")

    parser.add_argument("--pnp_max_points", type=int, default=100_000, help="pnp maximum number of points kept")
    parser.add_argument("--viz_matches", type=int, default=0, help="debug matches")

    parser.add_argument("--output_dir", type=str, default=None, help="output path")
    parser.add_argument("--output_label", type=str, default='', help="prefix for results files")
    return parser


if __name__ == '__main__':
    parser = get_args_parser()
    args = parser.parse_args()
    conf_thr = args.confidence_threshold
    device = args.device
    pnp_mode = args.pnp_mode
    reprojection_error = args.reprojection_error
    reprojection_error_diag_ratio = args.reprojection_error_diag_ratio
    pnp_max_points = args.pnp_max_points
    viz_matches = args.viz_matches

    if args.weights is not None:
        weights_path = args.weights
    else:
        weights_path = "naver/" + args.model_name
    model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(args.device)

    dataset = eval(args.dataset)
    dataset.set_resolution(model)

    query_names = []
    poses_pred = []
    pose_errors = []
    angular_errors = []
    for idx in tqdm(range(len(dataset))):
        views = dataset[(idx)]  # 0 is the query
        query_view = views[0]
        map_views = views[1:]
        query_names.append(query_view['image_name'])

        query_pts2d = []
        query_pts3d = []
        for map_view in map_views:
            # prepare batch
            imgs = []
            for idx, img in enumerate([query_view['rgb_rescaled'], map_view['rgb_rescaled']]):
                imgs.append(dict(img=img.unsqueeze(0), true_shape=np.int32([img.shape[1:]]),
                                 idx=idx, instance=str(idx)))
            output = inference([tuple(imgs)], model, device, batch_size=1, verbose=False)
            pred1, pred2 = output['pred1'], output['pred2']
            confidence_masks = [pred1['conf'].squeeze(0) >= conf_thr,
                                (pred2['conf'].squeeze(0) >= conf_thr) & map_view['valid_rescaled']]
            pts3d = [pred1['pts3d'].squeeze(0), pred2['pts3d_in_other_view'].squeeze(0)]

            # find 2D-2D matches between the two images
            pts2d_list, pts3d_list = [], []
            for i in range(2):
                conf_i = confidence_masks[i].cpu().numpy()
                true_shape_i = imgs[i]['true_shape'][0]
                pts2d_list.append(xy_grid(true_shape_i[1], true_shape_i[0])[conf_i])
                pts3d_list.append(pts3d[i].detach().cpu().numpy()[conf_i])

            PQ, PM = pts3d_list[0], pts3d_list[1]
            if len(PQ) == 0 or len(PM) == 0:
                continue
            reciprocal_in_PM, nnM_in_PQ, num_matches = find_reciprocal_matches(PQ, PM)
            if viz_matches > 0:
                print(f'found {num_matches} matches')
            matches_im1 = pts2d_list[1][reciprocal_in_PM]
            matches_im0 = pts2d_list[0][nnM_in_PQ][reciprocal_in_PM]
            valid_pts3d = map_view['pts3d_rescaled'][matches_im1[:, 1], matches_im1[:, 0]]

            # from cv2 to colmap
            matches_im0 = matches_im0.astype(np.float64)
            matches_im1 = matches_im1.astype(np.float64)
            matches_im0[:, 0] += 0.5
            matches_im0[:, 1] += 0.5
            matches_im1[:, 0] += 0.5
            matches_im1[:, 1] += 0.5
            # rescale coordinates
            matches_im0 = geotrf(query_view['to_orig'], matches_im0, norm=True)
            matches_im1 = geotrf(query_view['to_orig'], matches_im1, norm=True)
            # from colmap back to cv2
            matches_im0[:, 0] -= 0.5
            matches_im0[:, 1] -= 0.5
            matches_im1[:, 0] -= 0.5
            matches_im1[:, 1] -= 0.5

            # visualize a few matches
            if viz_matches > 0:
                viz_imgs = [np.array(query_view['rgb']), np.array(map_view['rgb'])]
                from matplotlib import pyplot as pl
                n_viz = viz_matches
                match_idx_to_viz = np.round(np.linspace(0, num_matches - 1, n_viz)).astype(int)
                viz_matches_im0, viz_matches_im1 = matches_im0[match_idx_to_viz], matches_im1[match_idx_to_viz]

                H0, W0, H1, W1 = *viz_imgs[0].shape[:2], *viz_imgs[1].shape[:2]
                img0 = np.pad(viz_imgs[0], ((0, max(H1 - H0, 0)), (0, 0), (0, 0)), 'constant', constant_values=0)
                img1 = np.pad(viz_imgs[1], ((0, max(H0 - H1, 0)), (0, 0), (0, 0)), 'constant', constant_values=0)
                img = np.concatenate((img0, img1), axis=1)
                pl.figure()
                pl.imshow(img)
                cmap = pl.get_cmap('jet')
                for i in range(n_viz):
                    (x0, y0), (x1, y1) = viz_matches_im0[i].T, viz_matches_im1[i].T
                    pl.plot([x0, x1 + W0], [y0, y1], '-+', color=cmap(i / (n_viz - 1)), scalex=False, scaley=False)
                pl.show(block=True)

            if len(valid_pts3d) == 0:
                pass
            else:
                query_pts3d.append(valid_pts3d.cpu().numpy())
                query_pts2d.append(matches_im0)

        if len(query_pts2d) == 0:
            success = False
            pr_querycam_to_world = None
        else:
            query_pts2d = np.concatenate(query_pts2d, axis=0).astype(np.float32)
            query_pts3d = np.concatenate(query_pts3d, axis=0)
            if len(query_pts2d) > pnp_max_points:
                idxs = random.sample(range(len(query_pts2d)), pnp_max_points)
                query_pts3d = query_pts3d[idxs]
                query_pts2d = query_pts2d[idxs]

            W, H = query_view['rgb'].size
            if reprojection_error_diag_ratio is not None:
                reprojection_error_img = reprojection_error_diag_ratio * math.sqrt(W**2 + H**2)
            else:
                reprojection_error_img = reprojection_error
            success, pr_querycam_to_world = run_pnp(query_pts2d, query_pts3d,
                                                    query_view['intrinsics'], query_view['distortion'],
                                                    pnp_mode, reprojection_error_img, img_size=[W, H])

        if not success:
            abs_transl_error = float('inf')
            abs_angular_error = float('inf')
        else:
            abs_transl_error, abs_angular_error = get_pose_error(pr_querycam_to_world, query_view['cam_to_world'])

        pose_errors.append(abs_transl_error)
        angular_errors.append(abs_angular_error)
        poses_pred.append(pr_querycam_to_world)

    xp_label = f'tol_conf_{conf_thr}'
    if args.output_label:
        xp_label = args.output_label + '_' + xp_label
    if reprojection_error_diag_ratio is not None:
        xp_label = xp_label + f'_reproj_diag_{reprojection_error_diag_ratio}'
    else:
        xp_label = xp_label + f'_reproj_err_{reprojection_error}'
    export_results(args.output_dir, xp_label, query_names, poses_pred)
    out_string = aggregate_stats(f'{args.dataset}', pose_errors, angular_errors)
    print(out_string)