Spaces:
Running
Running
File size: 14,131 Bytes
4dfb78b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
"""
# %BANNER_BEGIN%
# ---------------------------------------------------------------------
# %COPYRIGHT_BEGIN%
#
# Magic Leap, Inc. ("COMPANY") CONFIDENTIAL
#
# Unpublished Copyright (c) 2020
# Magic Leap, Inc., All Rights Reserved.
#
# NOTICE: All information contained herein is, and remains the property
# of COMPANY. The intellectual and technical concepts contained herein
# are proprietary to COMPANY and may be covered by U.S. and Foreign
# Patents, patents in process, and are protected by trade secret or
# copyright law. Dissemination of this information or reproduction of
# this material is strictly forbidden unless prior written permission is
# obtained from COMPANY. Access to the source code contained herein is
# hereby forbidden to anyone except current COMPANY employees, managers
# or contractors who have executed Confidentiality and Non-disclosure
# agreements explicitly covering such access.
#
# The copyright notice above does not evidence any actual or intended
# publication or disclosure of this source code, which includes
# information that is confidential and/or proprietary, and is a trade
# secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION,
# PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS
# SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS
# STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND
# INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE
# CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS
# TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
# USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART.
#
# %COPYRIGHT_END%
# ----------------------------------------------------------------------
# %AUTHORS_BEGIN%
#
# Originating Authors: Paul-Edouard Sarlin
#
# %AUTHORS_END%
# --------------------------------------------------------------------*/
# %BANNER_END%
Described in:
SuperPoint: Self-Supervised Interest Point Detection and Description,
Daniel DeTone, Tomasz Malisiewicz, Andrew Rabinovich, CVPRW 2018.
Original code: github.com/MagicLeapResearch/SuperPointPretrainedNetwork
Adapted by Philipp Lindenberger (Phil26AT)
"""
import os.path
import torch
from torch import nn
from gluefactory.models.base_model import BaseModel
from gluefactory.models.utils.misc import pad_and_stack
def simple_nms(scores, radius):
"""Perform non maximum suppression on the heatmap using max-pooling.
This method does not suppress contiguous points that have the same score.
Args:
scores: the score heatmap of size `(B, H, W)`.
radius: an integer scalar, the radius of the NMS window.
"""
def max_pool(x):
return torch.nn.functional.max_pool2d(
x, kernel_size=radius * 2 + 1, stride=1, padding=radius
)
zeros = torch.zeros_like(scores)
max_mask = scores == max_pool(scores)
for _ in range(2):
supp_mask = max_pool(max_mask.float()) > 0
supp_scores = torch.where(supp_mask, zeros, scores)
new_max_mask = supp_scores == max_pool(supp_scores)
max_mask = max_mask | (new_max_mask & (~supp_mask))
return torch.where(max_mask, scores, zeros)
def top_k_keypoints(keypoints, scores, k):
if k >= len(keypoints):
return keypoints, scores
scores, indices = torch.topk(scores, k, dim=0, sorted=True)
return keypoints[indices], scores
def sample_k_keypoints(keypoints, scores, k):
if k >= len(keypoints):
return keypoints, scores
indices = torch.multinomial(scores, k, replacement=False)
return keypoints[indices], scores[indices]
def soft_argmax_refinement(keypoints, scores, radius: int):
width = 2 * radius + 1
sum_ = torch.nn.functional.avg_pool2d(
scores[:, None], width, 1, radius, divisor_override=1
)
ar = torch.arange(-radius, radius + 1).to(scores)
kernel_x = ar[None].expand(width, -1)[None, None]
dx = torch.nn.functional.conv2d(scores[:, None], kernel_x, padding=radius)
dy = torch.nn.functional.conv2d(
scores[:, None], kernel_x.transpose(2, 3), padding=radius
)
dydx = torch.stack([dy[:, 0], dx[:, 0]], -1) / sum_[:, 0, :, :, None]
refined_keypoints = []
for i, kpts in enumerate(keypoints):
delta = dydx[i][tuple(kpts.t())]
refined_keypoints.append(kpts.float() + delta)
return refined_keypoints
# Legacy (broken) sampling of the descriptors
def sample_descriptors(keypoints, descriptors, s):
b, c, h, w = descriptors.shape
keypoints = keypoints - s / 2 + 0.5
keypoints /= torch.tensor(
[(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)],
).to(
keypoints
)[None]
keypoints = keypoints * 2 - 1 # normalize to (-1, 1)
args = {"align_corners": True} if torch.__version__ >= "1.3" else {}
descriptors = torch.nn.functional.grid_sample(
descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", **args
)
descriptors = torch.nn.functional.normalize(
descriptors.reshape(b, c, -1), p=2, dim=1
)
return descriptors
# The original keypoint sampling is incorrect. We patch it here but
# keep the original one above for legacy.
def sample_descriptors_fix_sampling(keypoints, descriptors, s: int = 8):
"""Interpolate descriptors at keypoint locations"""
b, c, h, w = descriptors.shape
keypoints = keypoints / (keypoints.new_tensor([w, h]) * s)
keypoints = keypoints * 2 - 1 # normalize to (-1, 1)
descriptors = torch.nn.functional.grid_sample(
descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", align_corners=False
)
descriptors = torch.nn.functional.normalize(
descriptors.reshape(b, c, -1), p=2, dim=1
)
return descriptors
class SuperPoint(BaseModel):
default_conf = {
"has_detector": True,
"has_descriptor": True,
"descriptor_dim": 256,
# Inference
"sparse_outputs": True,
"dense_outputs": False,
"nms_radius": 4,
"refinement_radius": 0,
"detection_threshold": 0.005,
"max_num_keypoints": -1,
"max_num_keypoints_val": None,
"force_num_keypoints": False,
"randomize_keypoints_training": False,
"remove_borders": 4,
"legacy_sampling": True, # True to use the old broken sampling
}
required_data_keys = ["image"]
checkpoint_url = "https://github.com/magicleap/SuperGluePretrainedNetwork/raw/master/models/weights/superpoint_v1.pth" # noqa: E501
def _init(self, conf):
self.relu = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
c1, c2, c3, c4, c5 = 64, 64, 128, 128, 256
self.conv1a = nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1)
self.conv1b = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1)
self.conv2a = nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1)
self.conv2b = nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1)
self.conv3a = nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1)
self.conv3b = nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1)
self.conv4a = nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1)
self.conv4b = nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1)
if conf.has_detector:
self.convPa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
self.convPb = nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0)
for param in self.convPa.parameters():
param.requires_grad = False
for param in self.convPb.parameters():
param.requires_grad = False
if conf.has_descriptor:
self.convDa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
self.convDb = nn.Conv2d(
c5, conf.descriptor_dim, kernel_size=1, stride=1, padding=0
)
self.load_state_dict(torch.load(os.path.join('weights', 'superpoint_v1.pth')))
def _forward(self, data):
image = data["image"]
if image.shape[1] == 3: # RGB
scale = image.new_tensor([0.299, 0.587, 0.114]).view(1, 3, 1, 1)
image = (image * scale).sum(1, keepdim=True)
# Shared Encoder
x = self.relu(self.conv1a(image))
x = self.relu(self.conv1b(x))
x = self.pool(x)
x = self.relu(self.conv2a(x))
x = self.relu(self.conv2b(x))
x = self.pool(x)
x = self.relu(self.conv3a(x))
x = self.relu(self.conv3b(x))
x = self.pool(x)
x = self.relu(self.conv4a(x))
x = self.relu(self.conv4b(x))
pred = {}
if self.conf.has_detector:
# Compute the dense keypoint scores
cPa = self.relu(self.convPa(x))
scores = self.convPb(cPa)
scores = torch.nn.functional.softmax(scores, 1)[:, :-1]
b, c, h, w = scores.shape
scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8)
scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8)
pred["keypoint_scores"] = dense_scores = scores
if self.conf.has_descriptor:
# Compute the dense descriptors
cDa = self.relu(self.convDa(x))
dense_desc = self.convDb(cDa)
dense_desc = torch.nn.functional.normalize(dense_desc, p=2, dim=1)
pred["descriptors"] = dense_desc
if self.conf.sparse_outputs:
assert self.conf.has_detector and self.conf.has_descriptor
scores = simple_nms(scores, self.conf.nms_radius)
# Discard keypoints near the image borders
if self.conf.remove_borders:
scores[:, : self.conf.remove_borders] = -1
scores[:, :, : self.conf.remove_borders] = -1
if "image_size" in data:
for i in range(scores.shape[0]):
w, h = data["image_size"][i]
scores[i, int(h.item()) - self.conf.remove_borders :] = -1
scores[i, :, int(w.item()) - self.conf.remove_borders :] = -1
else:
scores[:, -self.conf.remove_borders :] = -1
scores[:, :, -self.conf.remove_borders :] = -1
# Extract keypoints
best_kp = torch.where(scores > self.conf.detection_threshold)
scores = scores[best_kp]
# Separate into batches
keypoints = [
torch.stack(best_kp[1:3], dim=-1)[best_kp[0] == i] for i in range(b)
]
scores = [scores[best_kp[0] == i] for i in range(b)]
# Keep the k keypoints with highest score
max_kps = self.conf.max_num_keypoints
# for val we allow different
if not self.training and self.conf.max_num_keypoints_val is not None:
max_kps = self.conf.max_num_keypoints_val
# Keep the k keypoints with highest score
if max_kps > 0:
if self.conf.randomize_keypoints_training and self.training:
# instead of selecting top-k, sample k by score weights
keypoints, scores = list(
zip(
*[
sample_k_keypoints(k, s, max_kps)
for k, s in zip(keypoints, scores)
]
)
)
else:
keypoints, scores = list(
zip(
*[
top_k_keypoints(k, s, max_kps)
for k, s in zip(keypoints, scores)
]
)
)
keypoints, scores = list(keypoints), list(scores)
if self.conf["refinement_radius"] > 0:
keypoints = soft_argmax_refinement(
keypoints, dense_scores, self.conf["refinement_radius"]
)
# Convert (h, w) to (x, y)
keypoints = [torch.flip(k, [1]).float() for k in keypoints]
if self.conf.force_num_keypoints:
keypoints = pad_and_stack(
keypoints,
max_kps,
-2,
mode="random_c",
bounds=(
0,
data.get("image_size", torch.tensor(image.shape[-2:]))
.min()
.item(),
),
)
scores = pad_and_stack(scores, max_kps, -1, mode="zeros")
else:
keypoints = torch.stack(keypoints, 0)
scores = torch.stack(scores, 0)
# Extract descriptors
if (len(keypoints) == 1) or self.conf.force_num_keypoints:
# Batch sampling of the descriptors
if self.conf.legacy_sampling:
desc = sample_descriptors(keypoints, dense_desc, 8)
else:
desc = sample_descriptors_fix_sampling(keypoints, dense_desc, 8)
else:
if self.conf.legacy_sampling:
desc = [
sample_descriptors(k[None], d[None], 8)[0]
for k, d in zip(keypoints, dense_desc)
]
else:
desc = [
sample_descriptors_fix_sampling(k[None], d[None], 8)[0]
for k, d in zip(keypoints, dense_desc)
]
pred = {
"keypoints": keypoints + 0.5,
"descriptors": desc.transpose(-1, -2),
}
if self.conf.dense_outputs:
pred["dense_descriptors"] = dense_desc
return pred
def loss(self, pred, data):
raise NotImplementedError
def metrics(self, pred, data):
raise NotImplementedError
|