Spaces:
Running
Running
File size: 7,476 Bytes
63f3cf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File pram -> metrics
@IDE PyCharm
@Author fx221@cam.ac.uk
@Date 29/01/2024 16:32
=================================================='''
import torch
import numpy as np
import torch.nn.functional as F
class SeqIOU:
def __init__(self, n_class, ignored_sids=[]):
self.n_class = n_class
self.ignored_sids = ignored_sids
self.class_iou = np.zeros(n_class)
self.precisions = []
def add(self, pred, target):
for i in range(self.n_class):
inter = np.sum((pred == target) * (target == i))
union = np.sum(target == i) + np.sum(pred == i) - inter
if union > 0:
self.class_iou[i] = inter / union
acc = (pred == target)
if len(self.ignored_sids) == 0:
acc_ratio = np.sum(acc) / pred.shape[0]
else:
pred_mask = (pred >= 0)
target_mask = (target >= 0)
for i in self.ignored_sids:
pred_mask = pred_mask & (pred == i)
target_mask = target_mask & (target == i)
acc = acc & (1 - pred_mask)
tgt = (1 - target_mask)
if np.sum(tgt) == 0:
acc_ratio = 0
else:
acc_ratio = np.sum(acc) / np.sum(tgt)
self.precisions.append(acc_ratio)
def get_mean_iou(self):
return np.mean(self.class_iou)
def get_mean_precision(self):
return np.mean(self.precisions)
def clear(self):
self.precisions = []
self.class_iou = np.zeros(self.n_class)
def compute_iou(pred: np.ndarray, target: np.ndarray, n_class: int, ignored_ids=[]) -> float:
class_iou = np.zeros(n_class)
for i in range(n_class):
if i in ignored_ids:
continue
inter = np.sum((pred == target) * (target == i))
union = np.sum(target == i) + np.sum(pred == i) - inter
if union > 0:
class_iou[i] = inter / union
return np.mean(class_iou)
# return class_iou
def compute_precision(pred: np.ndarray, target: np.ndarray, ignored_ids: list = []) -> float:
acc = (pred == target)
if len(ignored_ids) == 0:
return np.sum(acc) / pred.shape[0]
else:
pred_mask = (pred >= 0)
target_mask = (target >= 0)
for i in ignored_ids:
pred_mask = pred_mask & (pred == i)
target_mask = target_mask & (target == i)
acc = acc & (1 - pred_mask)
tgt = (1 - target_mask)
if np.sum(tgt) == 0:
return 0
return np.sum(acc) / np.sum(tgt)
def compute_cls_corr(pred: torch.Tensor, target: torch.Tensor, k: int = 20) -> torch.Tensor:
bs = pred.shape[0]
_, target_ids = torch.topk(target, k=k, dim=1)
target_ids = target_ids.cpu().numpy()
_, top_ids = torch.topk(pred, k=k, dim=1) # [B, k, 1]
top_ids = top_ids.cpu().numpy()
acc = 0
for i in range(bs):
# print('top_ids: ', i, top_ids[i], target_ids[i])
overlap = [v for v in top_ids[i] if v in target_ids[i] and v >= 0]
acc = acc + len(overlap) / k
acc = acc / bs
return torch.from_numpy(np.array([acc])).to(pred.device)
def compute_corr_incorr(pred: torch.Tensor, target: torch.Tensor, ignored_ids: list = []) -> tuple:
'''
:param pred: [B, N, C]
:param target: [B, N]
:param ignored_ids: []
:return:
'''
pred_ids = torch.max(pred, dim=-1)[1]
if len(ignored_ids) == 0:
acc = (pred_ids == target)
inacc = torch.logical_not(acc)
acc_ratio = torch.sum(acc) / torch.numel(target)
inacc_ratio = torch.sum(inacc) / torch.numel(target)
else:
acc = (pred_ids == target)
inacc = torch.logical_not(acc)
mask = torch.zeros_like(acc)
for i in ignored_ids:
mask = torch.logical_and(mask, (target == i))
acc = torch.logical_and(acc, torch.logical_not(mask))
acc_ratio = torch.sum(acc) / torch.numel(target)
inacc_ratio = torch.sum(inacc) / torch.numel(target)
return acc_ratio, inacc_ratio
def compute_seg_loss_weight(pred: torch.Tensor,
target: torch.Tensor,
background_id: int = 0,
weight_background: float = 0.1) -> torch.Tensor:
'''
:param pred: [B, C, N]
:param target: [B, N]
:param background_id:
:param weight_background:
:return:
'''
pred = pred.transpose(-2, -1).contiguous() # [B, N, C] -> [B, C, N]
weight = torch.ones(size=(pred.shape[1],), device=pred.device).float()
pred = torch.log_softmax(pred, dim=1)
weight[background_id] = weight_background
seg_loss = F.cross_entropy(pred, target.long(), weight=weight)
return seg_loss
def compute_cls_loss_ce(pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
cls_loss = torch.zeros(size=[], device=pred.device)
if len(pred.shape) == 2:
n_valid = torch.sum(target > 0)
cls_loss = cls_loss + torch.nn.functional.cross_entropy(pred, target, reduction='sum')
cls_loss = cls_loss / n_valid
else:
for i in range(pred.shape[-1]):
cls_loss = cls_loss + torch.nn.functional.cross_entropy(pred[..., i], target[..., i], reduction='sum')
n_valid = torch.sum(target > 0)
cls_loss = cls_loss / n_valid
return cls_loss
def compute_cls_loss_kl(pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
cls_loss = torch.zeros(size=[], device=pred.device)
if len(pred.shape) == 2:
cls_loss = cls_loss + torch.nn.functional.kl_div(torch.log_softmax(pred, dim=-1),
torch.softmax(target, dim=-1),
reduction='sum')
else:
for i in range(pred.shape[-1]):
cls_loss = cls_loss + torch.nn.functional.kl_div(torch.log_softmax(pred[..., i], dim=-1),
torch.softmax(target[..., i], dim=-1),
reduction='sum')
cls_loss = cls_loss / pred.shape[-1]
return cls_loss
def compute_sc_loss_l1(pred: torch.Tensor, target: torch.Tensor, mean_xyz=None, scale_xyz=None, mask=None):
'''
:param pred: [B, N, C]
:param target: [B, N, C]
:param mean_xyz:
:param scale_xyz:
:param mask:
:return:
'''
loss = (pred - target)
loss = torch.abs(loss).mean(dim=1)
if mask is not None:
return torch.mean(loss[mask])
else:
return torch.mean(loss)
def compute_sc_loss_geo(pred: torch.Tensor, P, K, p2ds, mean_xyz, scale_xyz, max_value=20, mask=None):
b, c, n = pred.shape
p3ds = (pred * scale_xyz[..., None].repeat(1, 1, n) + mean_xyz[..., None].repeat(1, 1, n))
p3ds_homo = torch.cat(
[pred, torch.ones(size=(p3ds.shape[0], 1, p3ds.shape[2]), dtype=p3ds.dtype, device=p3ds.device)],
dim=1) # [B, 4, N]
p3ds = torch.matmul(K, torch.matmul(P, p3ds_homo)[:, :3, :]) # [B, 3, N]
# print('p3ds: ', p3ds.shape, P.shape, K.shape, p2ds.shape)
p2ds_ = p3ds[:, :2, :] / p3ds[:, 2:, :]
loss = ((p2ds_ - p2ds.permute(0, 2, 1)) ** 2).sum(1)
loss = torch.clamp_max(loss, max=max_value)
if mask is not None:
return torch.mean(loss[mask])
else:
return torch.mean(loss)
|