Spaces:
Running
Running
File size: 28,758 Bytes
c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 c74a070 c608946 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 |
import math
import os
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..utils import get_tuple_transform_ops
from einops import rearrange
from ..utils.local_correlation import local_correlation
class ConvRefiner(nn.Module):
def __init__(
self,
in_dim=6,
hidden_dim=16,
out_dim=2,
dw=False,
kernel_size=5,
hidden_blocks=3,
displacement_emb=None,
displacement_emb_dim=None,
local_corr_radius=None,
corr_in_other=None,
no_support_fm=False,
):
super().__init__()
self.block1 = self.create_block(
in_dim, hidden_dim, dw=dw, kernel_size=kernel_size
)
self.hidden_blocks = nn.Sequential(
*[
self.create_block(
hidden_dim,
hidden_dim,
dw=dw,
kernel_size=kernel_size,
)
for hb in range(hidden_blocks)
]
)
self.out_conv = nn.Conv2d(hidden_dim, out_dim, 1, 1, 0)
if displacement_emb:
self.has_displacement_emb = True
self.disp_emb = nn.Conv2d(2, displacement_emb_dim, 1, 1, 0)
else:
self.has_displacement_emb = False
self.local_corr_radius = local_corr_radius
self.corr_in_other = corr_in_other
self.no_support_fm = no_support_fm
def create_block(
self,
in_dim,
out_dim,
dw=False,
kernel_size=5,
):
num_groups = 1 if not dw else in_dim
if dw:
assert (
out_dim % in_dim == 0
), "outdim must be divisible by indim for depthwise"
conv1 = nn.Conv2d(
in_dim,
out_dim,
kernel_size=kernel_size,
stride=1,
padding=kernel_size // 2,
groups=num_groups,
)
norm = nn.BatchNorm2d(out_dim)
relu = nn.ReLU(inplace=True)
conv2 = nn.Conv2d(out_dim, out_dim, 1, 1, 0)
return nn.Sequential(conv1, norm, relu, conv2)
def forward(self, x, y, flow):
"""Computes the relative refining displacement in pixels for a given image x,y and a coarse flow-field between them
Args:
x ([type]): [description]
y ([type]): [description]
flow ([type]): [description]
Returns:
[type]: [description]
"""
device = x.device
b, c, hs, ws = x.shape
with torch.no_grad():
x_hat = F.grid_sample(y, flow.permute(0, 2, 3, 1), align_corners=False)
if self.has_displacement_emb:
query_coords = torch.meshgrid(
(
torch.linspace(-1 + 1 / hs, 1 - 1 / hs, hs, device=device),
torch.linspace(-1 + 1 / ws, 1 - 1 / ws, ws, device=device),
)
)
query_coords = torch.stack((query_coords[1], query_coords[0]))
query_coords = query_coords[None].expand(b, 2, hs, ws)
in_displacement = flow - query_coords
emb_in_displacement = self.disp_emb(in_displacement)
if self.local_corr_radius:
# TODO: should corr have gradient?
if self.corr_in_other:
# Corr in other means take a kxk grid around the predicted coordinate in other image
local_corr = local_correlation(
x, y, local_radius=self.local_corr_radius, flow=flow
)
else:
# Otherwise we use the warp to sample in the first image
# This is actually different operations, especially for large viewpoint changes
local_corr = local_correlation(
x,
x_hat,
local_radius=self.local_corr_radius,
)
if self.no_support_fm:
x_hat = torch.zeros_like(x)
d = torch.cat((x, x_hat, emb_in_displacement, local_corr), dim=1)
else:
d = torch.cat((x, x_hat, emb_in_displacement), dim=1)
else:
if self.no_support_fm:
x_hat = torch.zeros_like(x)
d = torch.cat((x, x_hat), dim=1)
d = self.block1(d)
d = self.hidden_blocks(d)
d = self.out_conv(d)
certainty, displacement = d[:, :-2], d[:, -2:]
return certainty, displacement
class CosKernel(nn.Module): # similar to softmax kernel
def __init__(self, T, learn_temperature=False):
super().__init__()
self.learn_temperature = learn_temperature
if self.learn_temperature:
self.T = nn.Parameter(torch.tensor(T))
else:
self.T = T
def __call__(self, x, y, eps=1e-6):
c = torch.einsum("bnd,bmd->bnm", x, y) / (
x.norm(dim=-1)[..., None] * y.norm(dim=-1)[:, None] + eps
)
if self.learn_temperature:
T = self.T.abs() + 0.01
else:
T = torch.tensor(self.T, device=c.device)
K = ((c - 1.0) / T).exp()
return K
class CAB(nn.Module):
def __init__(self, in_channels, out_channels):
super(CAB, self).__init__()
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.conv1 = nn.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1, padding=0
)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(
out_channels, out_channels, kernel_size=1, stride=1, padding=0
)
self.sigmod = nn.Sigmoid()
def forward(self, x):
x1, x2 = x # high, low (old, new)
x = torch.cat([x1, x2], dim=1)
x = self.global_pooling(x)
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.sigmod(x)
x2 = x * x2
res = x2 + x1
return res
class RRB(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3):
super(RRB, self).__init__()
self.conv1 = nn.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1, padding=0
)
self.conv2 = nn.Conv2d(
out_channels,
out_channels,
kernel_size=kernel_size,
stride=1,
padding=kernel_size // 2,
)
self.relu = nn.ReLU()
self.bn = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(
out_channels,
out_channels,
kernel_size=kernel_size,
stride=1,
padding=kernel_size // 2,
)
def forward(self, x):
x = self.conv1(x)
res = self.conv2(x)
res = self.bn(res)
res = self.relu(res)
res = self.conv3(res)
return self.relu(x + res)
class DFN(nn.Module):
def __init__(
self,
internal_dim,
feat_input_modules,
pred_input_modules,
rrb_d_dict,
cab_dict,
rrb_u_dict,
use_global_context=False,
global_dim=None,
terminal_module=None,
upsample_mode="bilinear",
align_corners=False,
):
super().__init__()
if use_global_context:
assert (
global_dim is not None
), "Global dim must be provided when using global context"
self.align_corners = align_corners
self.internal_dim = internal_dim
self.feat_input_modules = feat_input_modules
self.pred_input_modules = pred_input_modules
self.rrb_d = rrb_d_dict
self.cab = cab_dict
self.rrb_u = rrb_u_dict
self.use_global_context = use_global_context
if use_global_context:
self.global_to_internal = nn.Conv2d(global_dim, self.internal_dim, 1, 1, 0)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.terminal_module = (
terminal_module if terminal_module is not None else nn.Identity()
)
self.upsample_mode = upsample_mode
self._scales = [int(key) for key in self.terminal_module.keys()]
def scales(self):
return self._scales.copy()
def forward(self, embeddings, feats, context, key):
feats = self.feat_input_modules[str(key)](feats)
embeddings = torch.cat([feats, embeddings], dim=1)
embeddings = self.rrb_d[str(key)](embeddings)
context = self.cab[str(key)]([context, embeddings])
context = self.rrb_u[str(key)](context)
preds = self.terminal_module[str(key)](context)
pred_coord = preds[:, -2:]
pred_certainty = preds[:, :-2]
return pred_coord, pred_certainty, context
class GP(nn.Module):
def __init__(
self,
kernel,
T=1,
learn_temperature=False,
only_attention=False,
gp_dim=64,
basis="fourier",
covar_size=5,
only_nearest_neighbour=False,
sigma_noise=0.1,
no_cov=False,
predict_features=False,
):
super().__init__()
self.K = kernel(T=T, learn_temperature=learn_temperature)
self.sigma_noise = sigma_noise
self.covar_size = covar_size
self.pos_conv = torch.nn.Conv2d(2, gp_dim, 1, 1)
self.only_attention = only_attention
self.only_nearest_neighbour = only_nearest_neighbour
self.basis = basis
self.no_cov = no_cov
self.dim = gp_dim
self.predict_features = predict_features
def get_local_cov(self, cov):
K = self.covar_size
b, h, w, h, w = cov.shape
hw = h * w
cov = F.pad(cov, 4 * (K // 2,)) # pad v_q
delta = torch.stack(
torch.meshgrid(
torch.arange(-(K // 2), K // 2 + 1), torch.arange(-(K // 2), K // 2 + 1)
),
dim=-1,
)
positions = torch.stack(
torch.meshgrid(
torch.arange(K // 2, h + K // 2), torch.arange(K // 2, w + K // 2)
),
dim=-1,
)
neighbours = positions[:, :, None, None, :] + delta[None, :, :]
points = torch.arange(hw)[:, None].expand(hw, K**2)
local_cov = cov.reshape(b, hw, h + K - 1, w + K - 1)[
:,
points.flatten(),
neighbours[..., 0].flatten(),
neighbours[..., 1].flatten(),
].reshape(b, h, w, K**2)
return local_cov
def reshape(self, x):
return rearrange(x, "b d h w -> b (h w) d")
def project_to_basis(self, x):
if self.basis == "fourier":
return torch.cos(8 * math.pi * self.pos_conv(x))
elif self.basis == "linear":
return self.pos_conv(x)
else:
raise ValueError(
"No other bases other than fourier and linear currently supported in public release"
)
def get_pos_enc(self, y):
b, c, h, w = y.shape
coarse_coords = torch.meshgrid(
(
torch.linspace(-1 + 1 / h, 1 - 1 / h, h, device=y.device),
torch.linspace(-1 + 1 / w, 1 - 1 / w, w, device=y.device),
)
)
coarse_coords = torch.stack((coarse_coords[1], coarse_coords[0]), dim=-1)[
None
].expand(b, h, w, 2)
coarse_coords = rearrange(coarse_coords, "b h w d -> b d h w")
coarse_embedded_coords = self.project_to_basis(coarse_coords)
return coarse_embedded_coords
def forward(self, x, y, **kwargs):
b, c, h1, w1 = x.shape
b, c, h2, w2 = y.shape
f = self.get_pos_enc(y)
if self.predict_features:
f = f + y[:, : self.dim] # Stupid way to predict features
b, d, h2, w2 = f.shape
# assert x.shape == y.shape
x, y, f = self.reshape(x), self.reshape(y), self.reshape(f)
K_xx = self.K(x, x)
K_yy = self.K(y, y)
K_xy = self.K(x, y)
K_yx = K_xy.permute(0, 2, 1)
sigma_noise = self.sigma_noise * torch.eye(h2 * w2, device=x.device)[None, :, :]
# Due to https://github.com/pytorch/pytorch/issues/16963 annoying warnings, remove batch if N large
if len(K_yy[0]) > 2000:
K_yy_inv = torch.cat(
[
torch.linalg.inv(K_yy[k : k + 1] + sigma_noise[k : k + 1])
for k in range(b)
]
)
else:
K_yy_inv = torch.linalg.inv(K_yy + sigma_noise)
mu_x = K_xy.matmul(K_yy_inv.matmul(f))
mu_x = rearrange(mu_x, "b (h w) d -> b d h w", h=h1, w=w1)
if not self.no_cov:
cov_x = K_xx - K_xy.matmul(K_yy_inv.matmul(K_yx))
cov_x = rearrange(
cov_x, "b (h w) (r c) -> b h w r c", h=h1, w=w1, r=h1, c=w1
)
local_cov_x = self.get_local_cov(cov_x)
local_cov_x = rearrange(local_cov_x, "b h w K -> b K h w")
gp_feats = torch.cat((mu_x, local_cov_x), dim=1)
else:
gp_feats = mu_x
return gp_feats
class Encoder(nn.Module):
def __init__(self, resnet):
super().__init__()
self.resnet = resnet
def forward(self, x):
x0 = x
b, c, h, w = x.shape
x = self.resnet.conv1(x)
x = self.resnet.bn1(x)
x1 = self.resnet.relu(x)
x = self.resnet.maxpool(x1)
x2 = self.resnet.layer1(x)
x3 = self.resnet.layer2(x2)
x4 = self.resnet.layer3(x3)
x5 = self.resnet.layer4(x4)
feats = {32: x5, 16: x4, 8: x3, 4: x2, 2: x1, 1: x0}
return feats
def train(self, mode=True):
super().train(mode)
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
pass
class Decoder(nn.Module):
def __init__(
self,
embedding_decoder,
gps,
proj,
conv_refiner,
transformers=None,
detach=False,
scales="all",
pos_embeddings=None,
):
super().__init__()
self.embedding_decoder = embedding_decoder
self.gps = gps
self.proj = proj
self.conv_refiner = conv_refiner
self.detach = detach
if scales == "all":
self.scales = ["32", "16", "8", "4", "2", "1"]
else:
self.scales = scales
def upsample_preds(self, flow, certainty, query, support):
b, hs, ws, d = flow.shape
b, c, h, w = query.shape
flow = flow.permute(0, 3, 1, 2)
certainty = F.interpolate(
certainty, size=(h, w), align_corners=False, mode="bilinear"
)
flow = F.interpolate(flow, size=(h, w), align_corners=False, mode="bilinear")
delta_certainty, delta_flow = self.conv_refiner["1"](query, support, flow)
flow = torch.stack(
(
flow[:, 0] + delta_flow[:, 0] / (4 * w),
flow[:, 1] + delta_flow[:, 1] / (4 * h),
),
dim=1,
)
flow = flow.permute(0, 2, 3, 1)
certainty = certainty + delta_certainty
return flow, certainty
def get_placeholder_flow(self, b, h, w, device):
coarse_coords = torch.meshgrid(
(
torch.linspace(-1 + 1 / h, 1 - 1 / h, h, device=device),
torch.linspace(-1 + 1 / w, 1 - 1 / w, w, device=device),
)
)
coarse_coords = torch.stack((coarse_coords[1], coarse_coords[0]), dim=-1)[
None
].expand(b, h, w, 2)
coarse_coords = rearrange(coarse_coords, "b h w d -> b d h w")
return coarse_coords
def forward(self, f1, f2, upsample=False, dense_flow=None, dense_certainty=None):
coarse_scales = self.embedding_decoder.scales()
all_scales = self.scales if not upsample else ["8", "4", "2", "1"]
sizes = {scale: f1[scale].shape[-2:] for scale in f1}
h, w = sizes[1]
b = f1[1].shape[0]
device = f1[1].device
coarsest_scale = int(all_scales[0])
old_stuff = torch.zeros(
b,
self.embedding_decoder.internal_dim,
*sizes[coarsest_scale],
device=f1[coarsest_scale].device
)
dense_corresps = {}
if not upsample:
dense_flow = self.get_placeholder_flow(b, *sizes[coarsest_scale], device)
dense_certainty = 0.0
else:
dense_flow = F.interpolate(
dense_flow,
size=sizes[coarsest_scale],
align_corners=False,
mode="bilinear",
)
dense_certainty = F.interpolate(
dense_certainty,
size=sizes[coarsest_scale],
align_corners=False,
mode="bilinear",
)
for new_scale in all_scales:
ins = int(new_scale)
f1_s, f2_s = f1[ins], f2[ins]
if new_scale in self.proj:
f1_s, f2_s = self.proj[new_scale](f1_s), self.proj[new_scale](f2_s)
b, c, hs, ws = f1_s.shape
if ins in coarse_scales:
old_stuff = F.interpolate(
old_stuff, size=sizes[ins], mode="bilinear", align_corners=False
)
new_stuff = self.gps[new_scale](f1_s, f2_s, dense_flow=dense_flow)
dense_flow, dense_certainty, old_stuff = self.embedding_decoder(
new_stuff, f1_s, old_stuff, new_scale
)
if new_scale in self.conv_refiner:
delta_certainty, displacement = self.conv_refiner[new_scale](
f1_s, f2_s, dense_flow
)
dense_flow = torch.stack(
(
dense_flow[:, 0] + ins * displacement[:, 0] / (4 * w),
dense_flow[:, 1] + ins * displacement[:, 1] / (4 * h),
),
dim=1,
)
dense_certainty = (
dense_certainty + delta_certainty
) # predict both certainty and displacement
dense_corresps[ins] = {
"dense_flow": dense_flow,
"dense_certainty": dense_certainty,
}
if new_scale != "1":
dense_flow = F.interpolate(
dense_flow,
size=sizes[ins // 2],
align_corners=False,
mode="bilinear",
)
dense_certainty = F.interpolate(
dense_certainty,
size=sizes[ins // 2],
align_corners=False,
mode="bilinear",
)
if self.detach:
dense_flow = dense_flow.detach()
dense_certainty = dense_certainty.detach()
return dense_corresps
class RegressionMatcher(nn.Module):
def __init__(
self,
encoder,
decoder,
h=384,
w=512,
use_contrastive_loss=False,
alpha=1,
beta=0,
sample_mode="threshold",
upsample_preds=False,
symmetric=False,
name=None,
use_soft_mutual_nearest_neighbours=False,
):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.w_resized = w
self.h_resized = h
self.og_transforms = get_tuple_transform_ops(resize=None, normalize=True)
self.use_contrastive_loss = use_contrastive_loss
self.alpha = alpha
self.beta = beta
self.sample_mode = sample_mode
self.upsample_preds = upsample_preds
self.symmetric = symmetric
self.name = name
self.sample_thresh = 0.05
self.upsample_res = (864, 1152)
if use_soft_mutual_nearest_neighbours:
assert symmetric, "MNS requires symmetric inference"
self.use_soft_mutual_nearest_neighbours = use_soft_mutual_nearest_neighbours
def extract_backbone_features(self, batch, batched=True, upsample=True):
# TODO: only extract stride [1,2,4,8] for upsample = True
x_q = batch["query"]
x_s = batch["support"]
if batched:
X = torch.cat((x_q, x_s))
feature_pyramid = self.encoder(X)
else:
feature_pyramid = self.encoder(x_q), self.encoder(x_s)
return feature_pyramid
def sample(
self,
dense_matches,
dense_certainty,
num=10000,
):
if "threshold" in self.sample_mode:
upper_thresh = self.sample_thresh
dense_certainty = dense_certainty.clone()
dense_certainty[dense_certainty > upper_thresh] = 1
elif "pow" in self.sample_mode:
dense_certainty = dense_certainty ** (1 / 3)
elif "naive" in self.sample_mode:
dense_certainty = torch.ones_like(dense_certainty)
matches, certainty = (
dense_matches.reshape(-1, 4),
dense_certainty.reshape(-1),
)
expansion_factor = 4 if "balanced" in self.sample_mode else 1
good_samples = torch.multinomial(
certainty,
num_samples=min(expansion_factor * num, len(certainty)),
replacement=False,
)
good_matches, good_certainty = matches[good_samples], certainty[good_samples]
if "balanced" not in self.sample_mode:
return good_matches, good_certainty
from ..utils.kde import kde
density = kde(good_matches, std=0.1)
p = 1 / (density + 1)
p[
density < 10
] = 1e-7 # Basically should have at least 10 perfect neighbours, or around 100 ok ones
balanced_samples = torch.multinomial(
p, num_samples=min(num, len(good_certainty)), replacement=False
)
return good_matches[balanced_samples], good_certainty[balanced_samples]
def forward(self, batch, batched=True):
feature_pyramid = self.extract_backbone_features(batch, batched=batched)
if batched:
f_q_pyramid = {
scale: f_scale.chunk(2)[0] for scale, f_scale in feature_pyramid.items()
}
f_s_pyramid = {
scale: f_scale.chunk(2)[1] for scale, f_scale in feature_pyramid.items()
}
else:
f_q_pyramid, f_s_pyramid = feature_pyramid
dense_corresps = self.decoder(f_q_pyramid, f_s_pyramid)
if self.training and self.use_contrastive_loss:
return dense_corresps, (f_q_pyramid, f_s_pyramid)
else:
return dense_corresps
def forward_symmetric(self, batch, upsample=False, batched=True):
feature_pyramid = self.extract_backbone_features(
batch, upsample=upsample, batched=batched
)
f_q_pyramid = feature_pyramid
f_s_pyramid = {
scale: torch.cat((f_scale.chunk(2)[1], f_scale.chunk(2)[0]))
for scale, f_scale in feature_pyramid.items()
}
dense_corresps = self.decoder(
f_q_pyramid,
f_s_pyramid,
upsample=upsample,
**(batch["corresps"] if "corresps" in batch else {})
)
return dense_corresps
def to_pixel_coordinates(self, matches, H_A, W_A, H_B, W_B):
kpts_A, kpts_B = matches[..., :2], matches[..., 2:]
kpts_A = torch.stack(
(W_A / 2 * (kpts_A[..., 0] + 1), H_A / 2 * (kpts_A[..., 1] + 1)), axis=-1
)
kpts_B = torch.stack(
(W_B / 2 * (kpts_B[..., 0] + 1), H_B / 2 * (kpts_B[..., 1] + 1)), axis=-1
)
return kpts_A, kpts_B
def match(self, im1_path, im2_path, *args, batched=False, device=None):
assert not (
batched and self.upsample_preds
), "Cannot upsample preds if in batchmode (as we don't have access to high res images). You can turn off upsample_preds by model.upsample_preds = False "
if isinstance(im1_path, (str, os.PathLike)):
im1, im2 = Image.open(im1_path), Image.open(im2_path)
else: # assume it is a PIL Image
im1, im2 = im1_path, im2_path
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
symmetric = self.symmetric
self.train(False)
with torch.no_grad():
if not batched:
b = 1
w, h = im1.size
w2, h2 = im2.size
# Get images in good format
ws = self.w_resized
hs = self.h_resized
test_transform = get_tuple_transform_ops(
resize=(hs, ws), normalize=True
)
query, support = test_transform((im1, im2))
batch = {
"query": query[None].to(device),
"support": support[None].to(device),
}
else:
b, c, h, w = im1.shape
b, c, h2, w2 = im2.shape
assert w == w2 and h == h2, "For batched images we assume same size"
batch = {"query": im1.to(device), "support": im2.to(device)}
hs, ws = self.h_resized, self.w_resized
finest_scale = 1
# Run matcher
if symmetric:
dense_corresps = self.forward_symmetric(batch, batched=True)
else:
dense_corresps = self.forward(batch, batched=True)
if self.upsample_preds:
hs, ws = self.upsample_res
low_res_certainty = F.interpolate(
dense_corresps[16]["dense_certainty"],
size=(hs, ws),
align_corners=False,
mode="bilinear",
)
cert_clamp = 0
factor = 0.5
low_res_certainty = (
factor * low_res_certainty * (low_res_certainty < cert_clamp)
)
if self.upsample_preds:
test_transform = get_tuple_transform_ops(
resize=(hs, ws), normalize=True
)
query, support = test_transform((im1, im2))
query, support = query[None].to(device), support[None].to(device)
batch = {
"query": query,
"support": support,
"corresps": dense_corresps[finest_scale],
}
if symmetric:
dense_corresps = self.forward_symmetric(
batch, upsample=True, batched=True
)
else:
dense_corresps = self.forward(batch, batched=True, upsample=True)
query_to_support = dense_corresps[finest_scale]["dense_flow"]
dense_certainty = dense_corresps[finest_scale]["dense_certainty"]
# Get certainty interpolation
dense_certainty = dense_certainty - low_res_certainty
query_to_support = query_to_support.permute(0, 2, 3, 1)
# Create im1 meshgrid
query_coords = torch.meshgrid(
(
torch.linspace(-1 + 1 / hs, 1 - 1 / hs, hs, device=device),
torch.linspace(-1 + 1 / ws, 1 - 1 / ws, ws, device=device),
)
)
query_coords = torch.stack((query_coords[1], query_coords[0]))
query_coords = query_coords[None].expand(b, 2, hs, ws)
dense_certainty = dense_certainty.sigmoid() # logits -> probs
query_coords = query_coords.permute(0, 2, 3, 1)
if (query_to_support.abs() > 1).any() and True:
wrong = (query_to_support.abs() > 1).sum(dim=-1) > 0
dense_certainty[wrong[:, None]] = 0
query_to_support = torch.clamp(query_to_support, -1, 1)
if symmetric:
support_coords = query_coords
qts, stq = query_to_support.chunk(2)
q_warp = torch.cat((query_coords, qts), dim=-1)
s_warp = torch.cat((stq, support_coords), dim=-1)
warp = torch.cat((q_warp, s_warp), dim=2)
dense_certainty = torch.cat(dense_certainty.chunk(2), dim=3)[:, 0]
else:
warp = torch.cat((query_coords, query_to_support), dim=-1)
if batched:
return (warp, dense_certainty)
else:
return (
warp[0],
dense_certainty[0],
)
|