Spaces:
Running
Running
File size: 5,133 Bytes
a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use
import os, pdb
import torch
import torch.optim as optim
from tools import common, trainer
from tools.dataloader import *
from nets.patchnet import *
from nets.losses import *
default_net = "Quad_L2Net_ConfCFS()"
toy_db_debug = """SyntheticPairDataset(
ImgFolder('imgs'),
'RandomScale(256,1024,can_upscale=True)',
'RandomTilting(0.5), PixelNoise(25)')"""
db_web_images = """SyntheticPairDataset(
web_images,
'RandomScale(256,1024,can_upscale=True)',
'RandomTilting(0.5), PixelNoise(25)')"""
db_aachen_images = """SyntheticPairDataset(
aachen_db_images,
'RandomScale(256,1024,can_upscale=True)',
'RandomTilting(0.5), PixelNoise(25)')"""
db_aachen_style_transfer = """TransformedPairs(
aachen_style_transfer_pairs,
'RandomScale(256,1024,can_upscale=True), RandomTilting(0.5), PixelNoise(25)')"""
db_aachen_flow = "aachen_flow_pairs"
data_sources = dict(
D=toy_db_debug,
W=db_web_images,
A=db_aachen_images,
F=db_aachen_flow,
S=db_aachen_style_transfer,
)
default_dataloader = """PairLoader(CatPairDataset(`data`),
scale = 'RandomScale(256,1024,can_upscale=True)',
distort = 'ColorJitter(0.2,0.2,0.2,0.1)',
crop = 'RandomCrop(192)')"""
default_sampler = """NghSampler2(ngh=7, subq=-8, subd=1, pos_d=3, neg_d=5, border=16,
subd_neg=-8,maxpool_pos=True)"""
default_loss = """MultiLoss(
1, ReliabilityLoss(`sampler`, base=0.5, nq=20),
1, CosimLoss(N=`N`),
1, PeakyLoss(N=`N`))"""
class MyTrainer(trainer.Trainer):
"""This class implements the network training.
Below is the function I need to overload to explain how to do the backprop.
"""
def forward_backward(self, inputs):
output = self.net(imgs=[inputs.pop("img1"), inputs.pop("img2")])
allvars = dict(inputs, **output)
loss, details = self.loss_func(**allvars)
if torch.is_grad_enabled():
loss.backward()
return loss, details
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser("Train R2D2")
parser.add_argument("--data-loader", type=str, default=default_dataloader)
parser.add_argument(
"--train-data",
type=str,
default=list("WASF"),
nargs="+",
choices=set(data_sources.keys()),
)
parser.add_argument(
"--net", type=str, default=default_net, help="network architecture"
)
parser.add_argument(
"--pretrained", type=str, default="", help="pretrained model path"
)
parser.add_argument(
"--save-path", type=str, required=True, help="model save_path path"
)
parser.add_argument("--loss", type=str, default=default_loss, help="loss function")
parser.add_argument(
"--sampler", type=str, default=default_sampler, help="AP sampler"
)
parser.add_argument(
"--N", type=int, default=16, help="patch size for repeatability"
)
parser.add_argument(
"--epochs", type=int, default=25, help="number of training epochs"
)
parser.add_argument("--batch-size", "--bs", type=int, default=8, help="batch size")
parser.add_argument("--learning-rate", "--lr", type=str, default=1e-4)
parser.add_argument("--weight-decay", "--wd", type=float, default=5e-4)
parser.add_argument(
"--threads", type=int, default=8, help="number of worker threads"
)
parser.add_argument("--gpu", type=int, nargs="+", default=[0], help="-1 for CPU")
args = parser.parse_args()
iscuda = common.torch_set_gpu(args.gpu)
common.mkdir_for(args.save_path)
# Create data loader
from datasets import *
db = [data_sources[key] for key in args.train_data]
db = eval(args.data_loader.replace("`data`", ",".join(db)).replace("\n", ""))
print("Training image database =", db)
loader = threaded_loader(db, iscuda, args.threads, args.batch_size, shuffle=True)
# create network
print("\n>> Creating net = " + args.net)
net = eval(args.net)
print(f" ( Model size: {common.model_size(net)/1000:.0f}K parameters )")
# initialization
if args.pretrained:
checkpoint = torch.load(args.pretrained, lambda a, b: a)
net.load_pretrained(checkpoint["state_dict"])
# create losses
loss = args.loss.replace("`sampler`", args.sampler).replace("`N`", str(args.N))
print("\n>> Creating loss = " + loss)
loss = eval(loss.replace("\n", ""))
# create optimizer
optimizer = optim.Adam(
[p for p in net.parameters() if p.requires_grad],
lr=args.learning_rate,
weight_decay=args.weight_decay,
)
train = MyTrainer(net, loader, loss, optimizer)
if iscuda:
train = train.cuda()
# Training loop #
for epoch in range(args.epochs):
print(f"\n>> Starting epoch {epoch}...")
train()
print(f"\n>> Saving model to {args.save_path}")
torch.save({"net": args.net, "state_dict": net.state_dict()}, args.save_path)
|