File size: 1,098 Bytes
a80d6bb
 
 
 
c74a070
a80d6bb
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
c74a070
a80d6bb
c74a070
 
 
 
 
 
a80d6bb
 
c74a070
a80d6bb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use

import os, pdb  # , shutil
import numpy as np
import torch


def mkdir_for(file_path):
    os.makedirs(os.path.split(file_path)[0], exist_ok=True)


def model_size(model):
    """Computes the number of parameters of the model"""
    size = 0
    for weights in model.state_dict().values():
        size += np.prod(weights.shape)
    return size


def torch_set_gpu(gpus):
    if type(gpus) is int:
        gpus = [gpus]

    cuda = all(gpu >= 0 for gpu in gpus)

    if cuda:
        os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(gpu) for gpu in gpus])
        assert cuda and torch.cuda.is_available(), "%s has GPUs %s unavailable" % (
            os.environ["HOSTNAME"],
            os.environ["CUDA_VISIBLE_DEVICES"],
        )
        torch.backends.cudnn.benchmark = True  # speed-up cudnn
        torch.backends.cudnn.fastest = True  # even more speed-up?
        print("Launching on GPUs " + os.environ["CUDA_VISIBLE_DEVICES"])

    else:
        print("Launching on CPU")

    return cuda