File size: 27,423 Bytes
4d4dd90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
"""
A generic training script that works with any model and dataset.

Author: Paul-Edouard Sarlin (skydes)
"""

import argparse
import copy
import re
import shutil
import signal
from collections import defaultdict
from pathlib import Path
from pydoc import locate

import numpy as np
import torch
from omegaconf import OmegaConf
from torch.cuda.amp import GradScaler, autocast
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm

from . import __module_name__, logger
from .datasets import get_dataset
from .eval import run_benchmark
from .models import get_model
from .settings import EVAL_PATH, TRAINING_PATH
from .utils.experiments import get_best_checkpoint, get_last_checkpoint, save_experiment
from .utils.stdout_capturing import capture_outputs
from .utils.tensor import batch_to_device
from .utils.tools import (
    AverageMetric,
    MedianMetric,
    PRMetric,
    RecallMetric,
    fork_rng,
    set_seed,
)

# @TODO: Fix pbar pollution in logs
# @TODO: add plotting during evaluation

default_train_conf = {
    "seed": "???",  # training seed
    "epochs": 1,  # number of epochs
    "optimizer": "adam",  # name of optimizer in [adam, sgd, rmsprop]
    "opt_regexp": None,  # regular expression to filter parameters to optimize
    "optimizer_options": {},  # optional arguments passed to the optimizer
    "lr": 0.001,  # learning rate
    "lr_schedule": {
        "type": None,  # string in {factor, exp, member of torch.optim.lr_scheduler}
        "start": 0,
        "exp_div_10": 0,
        "on_epoch": False,
        "factor": 1.0,
        "options": {},  # add lr_scheduler arguments here
    },
    "lr_scaling": [(100, ["dampingnet.const"])],
    "eval_every_iter": 1000,  # interval for evaluation on the validation set
    "save_every_iter": 5000,  # interval for saving the current checkpoint
    "log_every_iter": 200,  # interval for logging the loss to the console
    "log_grad_every_iter": None,  # interval for logging gradient hists
    "test_every_epoch": 1,  # interval for evaluation on the test benchmarks
    "keep_last_checkpoints": 10,  # keep only the last X checkpoints
    "load_experiment": None,  # initialize the model from a previous experiment
    "median_metrics": [],  # add the median of some metrics
    "recall_metrics": {},  # add the recall of some metrics
    "pr_metrics": {},  # add pr curves, set labels/predictions/mask keys
    "best_key": "loss/total",  # key to use to select the best checkpoint
    "dataset_callback_fn": None,  # data func called at the start of each epoch
    "dataset_callback_on_val": False,  # call data func on val data?
    "clip_grad": None,
    "pr_curves": {},
    "plot": None,
    "submodules": [],
}
default_train_conf = OmegaConf.create(default_train_conf)


@torch.no_grad()
def do_evaluation(model, loader, device, loss_fn, conf, pbar=True):
    model.eval()
    results = {}
    pr_metrics = defaultdict(PRMetric)
    figures = []
    if conf.plot is not None:
        n, plot_fn = conf.plot
        plot_ids = np.random.choice(len(loader), min(len(loader), n), replace=False)
    for i, data in enumerate(
        tqdm(loader, desc="Evaluation", ascii=True, disable=not pbar)
    ):
        data = batch_to_device(data, device, non_blocking=True)
        with torch.no_grad():
            pred = model(data)
            losses, metrics = loss_fn(pred, data)
            if conf.plot is not None and i in plot_ids:
                figures.append(locate(plot_fn)(pred, data))
            # add PR curves
            for k, v in conf.pr_curves.items():
                pr_metrics[k].update(
                    pred[v["labels"]],
                    pred[v["predictions"]],
                    mask=pred[v["mask"]] if "mask" in v.keys() else None,
                )
            del pred, data
        numbers = {**metrics, **{"loss/" + k: v for k, v in losses.items()}}
        for k, v in numbers.items():
            if k not in results:
                results[k] = AverageMetric()
                if k in conf.median_metrics:
                    results[k + "_median"] = MedianMetric()
                if k in conf.recall_metrics.keys():
                    q = conf.recall_metrics[k]
                    results[k + f"_recall{int(q)}"] = RecallMetric(q)
            results[k].update(v)
            if k in conf.median_metrics:
                results[k + "_median"].update(v)
            if k in conf.recall_metrics.keys():
                q = conf.recall_metrics[k]
                results[k + f"_recall{int(q)}"].update(v)
        del numbers
    results = {k: results[k].compute() for k in results}
    return results, {k: v.compute() for k, v in pr_metrics.items()}, figures


def filter_parameters(params, regexp):
    """Filter trainable parameters based on regular expressions."""

    # Examples of regexp:
    #     '.*(weight|bias)$'
    #     'cnn\.(enc0|enc1).*bias'
    def filter_fn(x):
        n, p = x
        match = re.search(regexp, n)
        if not match:
            p.requires_grad = False
        return match

    params = list(filter(filter_fn, params))
    assert len(params) > 0, regexp
    logger.info("Selected parameters:\n" + "\n".join(n for n, p in params))
    return params


def get_lr_scheduler(optimizer, conf):
    """Get lr scheduler specified by conf.train.lr_schedule."""
    if conf.type not in ["factor", "exp", None]:
        return getattr(torch.optim.lr_scheduler, conf.type)(optimizer, **conf.options)

    # backward compatibility
    def lr_fn(it):  # noqa: E306
        if conf.type is None:
            return 1
        if conf.type == "factor":
            return 1.0 if it < conf.start else conf.factor
        if conf.type == "exp":
            gam = 10 ** (-1 / conf.exp_div_10)
            return 1.0 if it < conf.start else gam
        else:
            raise ValueError(conf.type)

    return torch.optim.lr_scheduler.MultiplicativeLR(optimizer, lr_fn)


def pack_lr_parameters(params, base_lr, lr_scaling):
    """Pack each group of parameters with the respective scaled learning rate."""
    filters, scales = tuple(zip(*[(n, s) for s, names in lr_scaling for n in names]))
    scale2params = defaultdict(list)
    for n, p in params:
        scale = 1
        # TODO: use proper regexp rather than just this inclusion check
        is_match = [f in n for f in filters]
        if any(is_match):
            scale = scales[is_match.index(True)]
        scale2params[scale].append((n, p))
    logger.info(
        "Parameters with scaled learning rate:\n%s",
        {s: [n for n, _ in ps] for s, ps in scale2params.items() if s != 1},
    )
    lr_params = [
        {"lr": scale * base_lr, "params": [p for _, p in ps]}
        for scale, ps in scale2params.items()
    ]
    return lr_params


def training(rank, conf, output_dir, args):
    if args.restore:
        logger.info(f"Restoring from previous training of {args.experiment}")
        try:
            init_cp = get_last_checkpoint(args.experiment, allow_interrupted=False)
        except AssertionError:
            init_cp = get_best_checkpoint(args.experiment)
        logger.info(f"Restoring from checkpoint {init_cp.name}")
        init_cp = torch.load(str(init_cp), map_location="cpu")
        conf = OmegaConf.merge(OmegaConf.create(init_cp["conf"]), conf)
        conf.train = OmegaConf.merge(default_train_conf, conf.train)
        epoch = init_cp["epoch"] + 1

        # get the best loss or eval metric from the previous best checkpoint
        best_cp = get_best_checkpoint(args.experiment)
        best_cp = torch.load(str(best_cp), map_location="cpu")
        best_eval = best_cp["eval"][conf.train.best_key]
        del best_cp
    else:
        # we start a new, fresh training
        conf.train = OmegaConf.merge(default_train_conf, conf.train)
        epoch = 0
        best_eval = float("inf")
        if conf.train.load_experiment:
            logger.info(f"Will fine-tune from weights of {conf.train.load_experiment}")
            # the user has to make sure that the weights are compatible
            try:
                init_cp = get_last_checkpoint(conf.train.load_experiment)
            except AssertionError:
                init_cp = get_best_checkpoint(conf.train.load_experiment)
            # init_cp = get_last_checkpoint(conf.train.load_experiment)
            init_cp = torch.load(str(init_cp), map_location="cpu")
            # load the model config of the old setup, and overwrite with current config
            conf.model = OmegaConf.merge(
                OmegaConf.create(init_cp["conf"]).model, conf.model
            )
            print(conf.model)
        else:
            init_cp = None

    OmegaConf.set_struct(conf, True)  # prevent access to unknown entries
    set_seed(conf.train.seed)
    if rank == 0:
        writer = SummaryWriter(log_dir=str(output_dir))

    data_conf = copy.deepcopy(conf.data)
    if args.distributed:
        logger.info(f"Training in distributed mode with {args.n_gpus} GPUs")
        assert torch.cuda.is_available()
        device = rank
        torch.distributed.init_process_group(
            backend="nccl",
            world_size=args.n_gpus,
            rank=device,
            init_method="file://" + str(args.lock_file),
        )
        torch.cuda.set_device(device)

        # adjust batch size and num of workers since these are per GPU
        if "batch_size" in data_conf:
            data_conf.batch_size = int(data_conf.batch_size / args.n_gpus)
        if "train_batch_size" in data_conf:
            data_conf.train_batch_size = int(data_conf.train_batch_size / args.n_gpus)
        if "num_workers" in data_conf:
            data_conf.num_workers = int(
                (data_conf.num_workers + args.n_gpus - 1) / args.n_gpus
            )
    else:
        device = "cuda" if torch.cuda.is_available() else "cpu"
    logger.info(f"Using device {device}")

    dataset = get_dataset(data_conf.name)(data_conf)

    # Optionally load a different validation dataset than the training one
    val_data_conf = conf.get("data_val", None)
    if val_data_conf is None:
        val_dataset = dataset
    else:
        val_dataset = get_dataset(val_data_conf.name)(val_data_conf)

    # @TODO: add test data loader

    if args.overfit:
        # we train and eval with the same single training batch
        logger.info("Data in overfitting mode")
        assert not args.distributed
        train_loader = dataset.get_overfit_loader("train")
        val_loader = val_dataset.get_overfit_loader("val")
    else:
        train_loader = dataset.get_data_loader("train", distributed=args.distributed)
        val_loader = val_dataset.get_data_loader("val")
    if rank == 0:
        logger.info(f"Training loader has {len(train_loader)} batches")
        logger.info(f"Validation loader has {len(val_loader)} batches")

    # interrupts are caught and delayed for graceful termination
    def sigint_handler(signal, frame):
        logger.info("Caught keyboard interrupt signal, will terminate")
        nonlocal stop
        if stop:
            raise KeyboardInterrupt
        stop = True

    stop = False
    signal.signal(signal.SIGINT, sigint_handler)
    model = get_model(conf.model.name)(conf.model).to(device)
    if args.compile:
        model = torch.compile(model, mode=args.compile)
    loss_fn = model.loss
    if init_cp is not None:
        model.load_state_dict(init_cp["model"], strict=False)
    if args.distributed:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device])
    if rank == 0 and args.print_arch:
        logger.info(f"Model: \n{model}")

    torch.backends.cudnn.benchmark = True
    if args.detect_anomaly:
        torch.autograd.set_detect_anomaly(True)

    optimizer_fn = {
        "sgd": torch.optim.SGD,
        "adam": torch.optim.Adam,
        "adamw": torch.optim.AdamW,
        "rmsprop": torch.optim.RMSprop,
    }[conf.train.optimizer]
    params = [(n, p) for n, p in model.named_parameters() if p.requires_grad]
    if conf.train.opt_regexp:
        params = filter_parameters(params, conf.train.opt_regexp)
    all_params = [p for n, p in params]

    lr_params = pack_lr_parameters(params, conf.train.lr, conf.train.lr_scaling)
    optimizer = optimizer_fn(
        lr_params, lr=conf.train.lr, **conf.train.optimizer_options
    )
    scaler = GradScaler(enabled=args.mixed_precision is not None)
    logger.info(f"Training with mixed_precision={args.mixed_precision}")

    mp_dtype = {
        "float16": torch.float16,
        "bfloat16": torch.bfloat16,
        None: torch.float32,  # we disable it anyway
    }[args.mixed_precision]

    results = None  # fix bug with it saving

    lr_scheduler = get_lr_scheduler(optimizer=optimizer, conf=conf.train.lr_schedule)
    if args.restore:
        optimizer.load_state_dict(init_cp["optimizer"])
        if "lr_scheduler" in init_cp:
            lr_scheduler.load_state_dict(init_cp["lr_scheduler"])

    if rank == 0:
        logger.info(
            "Starting training with configuration:\n%s", OmegaConf.to_yaml(conf)
        )
    losses_ = None

    def trace_handler(p):
        # torch.profiler.tensorboard_trace_handler(str(output_dir))
        output = p.key_averages().table(sort_by="self_cuda_time_total", row_limit=10)
        print(output)
        p.export_chrome_trace("trace_" + str(p.step_num) + ".json")
        p.export_stacks("/tmp/profiler_stacks.txt", "self_cuda_time_total")

    if args.profile:
        prof = torch.profiler.profile(
            schedule=torch.profiler.schedule(wait=1, warmup=1, active=1, repeat=1),
            on_trace_ready=torch.profiler.tensorboard_trace_handler(str(output_dir)),
            record_shapes=True,
            profile_memory=True,
            with_stack=True,
        )
        prof.__enter__()
    while epoch < conf.train.epochs and not stop:
        if rank == 0:
            logger.info(f"Starting epoch {epoch}")

        # we first run the eval
        if (
            rank == 0
            and epoch % conf.train.test_every_epoch == 0
            and args.run_benchmarks
        ):
            for bname, eval_conf in conf.get("benchmarks", {}).items():
                logger.info(f"Running eval on {bname}")
                s, f, r = run_benchmark(
                    bname,
                    eval_conf,
                    EVAL_PATH / bname / args.experiment / str(epoch),
                    model.eval(),
                )
                logger.info(str(s))
                for metric_name, value in s.items():
                    writer.add_scalar(f"test/{bname}/{metric_name}", value, epoch)
                for fig_name, fig in f.items():
                    writer.add_figure(f"figures/{bname}/{fig_name}", fig, epoch)

        # set the seed
        set_seed(conf.train.seed + epoch)

        # update learning rate
        if conf.train.lr_schedule.on_epoch and epoch > 0:
            old_lr = optimizer.param_groups[0]["lr"]
            lr_scheduler.step()
            logger.info(
                f'lr changed from {old_lr} to {optimizer.param_groups[0]["lr"]}'
            )
        if args.distributed:
            train_loader.sampler.set_epoch(epoch)
        if epoch > 0 and conf.train.dataset_callback_fn and not args.overfit:
            loaders = [train_loader]
            if conf.train.dataset_callback_on_val:
                loaders += [val_loader]
            for loader in loaders:
                if isinstance(loader.dataset, torch.utils.data.Subset):
                    getattr(loader.dataset.dataset, conf.train.dataset_callback_fn)(
                        conf.train.seed + epoch
                    )
                else:
                    getattr(loader.dataset, conf.train.dataset_callback_fn)(
                        conf.train.seed + epoch
                    )
        for it, data in enumerate(train_loader):
            tot_it = (len(train_loader) * epoch + it) * (
                args.n_gpus if args.distributed else 1
            )
            tot_n_samples = tot_it
            if not args.log_it:
                # We normalize the x-axis of tensorflow to num samples!
                tot_n_samples *= train_loader.batch_size

            model.train()
            optimizer.zero_grad()

            with autocast(enabled=args.mixed_precision is not None, dtype=mp_dtype):
                data = batch_to_device(data, device, non_blocking=True)
                pred = model(data)
                losses, _ = loss_fn(pred, data)
                loss = torch.mean(losses["total"])
            if torch.isnan(loss).any():
                print(f"Detected NAN, skipping iteration {it}")
                del pred, data, loss, losses
                continue

            do_backward = loss.requires_grad
            if args.distributed:
                do_backward = torch.tensor(do_backward).float().to(device)
                torch.distributed.all_reduce(
                    do_backward, torch.distributed.ReduceOp.PRODUCT
                )
                do_backward = do_backward > 0
            if do_backward:
                scaler.scale(loss).backward()
                if args.detect_anomaly:
                    # Check for params without any gradient which causes
                    # problems in distributed training with checkpointing
                    detected_anomaly = False
                    for name, param in model.named_parameters():
                        if param.grad is None and param.requires_grad:
                            print(f"param {name} has no gradient.")
                            detected_anomaly = True
                    if detected_anomaly:
                        raise RuntimeError("Detected anomaly in training.")
                if conf.train.get("clip_grad", None):
                    scaler.unscale_(optimizer)
                    try:
                        torch.nn.utils.clip_grad_norm_(
                            all_params,
                            max_norm=conf.train.clip_grad,
                            error_if_nonfinite=True,
                        )
                        scaler.step(optimizer)
                    except RuntimeError:
                        logger.warning("NaN detected in gradients. Skipping iteration.")
                    scaler.update()
                else:
                    scaler.step(optimizer)
                    scaler.update()
                if not conf.train.lr_schedule.on_epoch:
                    lr_scheduler.step()
            else:
                if rank == 0:
                    logger.warning(f"Skip iteration {it} due to detach.")

            if args.profile:
                prof.step()

            if it % conf.train.log_every_iter == 0:
                for k in sorted(losses.keys()):
                    if args.distributed:
                        losses[k] = losses[k].sum(-1)
                        torch.distributed.reduce(losses[k], dst=0)
                        losses[k] /= train_loader.batch_size * args.n_gpus
                    losses[k] = torch.mean(losses[k], -1)
                    losses[k] = losses[k].item()
                if rank == 0:
                    str_losses = [f"{k} {v:.3E}" for k, v in losses.items()]
                    logger.info(
                        "[E {} | it {}] loss {{{}}}".format(
                            epoch, it, ", ".join(str_losses)
                        )
                    )
                    for k, v in losses.items():
                        writer.add_scalar("training/" + k, v, tot_n_samples)
                    writer.add_scalar(
                        "training/lr", optimizer.param_groups[0]["lr"], tot_n_samples
                    )
                    writer.add_scalar("training/epoch", epoch, tot_n_samples)

            if conf.train.log_grad_every_iter is not None:
                if it % conf.train.log_grad_every_iter == 0:
                    grad_txt = ""
                    for name, param in model.named_parameters():
                        if param.grad is not None and param.requires_grad:
                            if name.endswith("bias"):
                                continue
                            writer.add_histogram(
                                f"grad/{name}", param.grad.detach(), tot_n_samples
                            )
                            norm = torch.norm(param.grad.detach(), 2)
                            grad_txt += f"{name} {norm.item():.3f}  \n"
                    writer.add_text("grad/summary", grad_txt, tot_n_samples)
            del pred, data, loss, losses

            # Run validation
            if (
                (
                    it % conf.train.eval_every_iter == 0
                    and (it > 0 or epoch == -int(args.no_eval_0))
                )
                or stop
                or it == (len(train_loader) - 1)
            ):
                with fork_rng(seed=conf.train.seed):
                    results, pr_metrics, figures = do_evaluation(
                        model,
                        val_loader,
                        device,
                        loss_fn,
                        conf.train,
                        pbar=(rank == -1),
                    )

                if rank == 0:
                    str_results = [
                        f"{k} {v:.3E}"
                        for k, v in results.items()
                        if isinstance(v, float)
                    ]
                    logger.info(f'[Validation] {{{", ".join(str_results)}}}')
                    for k, v in results.items():
                        if isinstance(v, dict):
                            writer.add_scalars(f"figure/val/{k}", v, tot_n_samples)
                        else:
                            writer.add_scalar("val/" + k, v, tot_n_samples)
                    for k, v in pr_metrics.items():
                        writer.add_pr_curve("val/" + k, *v, tot_n_samples)
                    # @TODO: optional always save checkpoint
                    if results[conf.train.best_key] < best_eval:
                        best_eval = results[conf.train.best_key]
                        save_experiment(
                            model,
                            optimizer,
                            lr_scheduler,
                            conf,
                            losses_,
                            results,
                            best_eval,
                            epoch,
                            tot_it,
                            output_dir,
                            stop,
                            args.distributed,
                            cp_name="checkpoint_best.tar",
                        )
                        logger.info(f"New best val: {conf.train.best_key}={best_eval}")
                    if len(figures) > 0:
                        for i, figs in enumerate(figures):
                            for name, fig in figs.items():
                                writer.add_figure(
                                    f"figures/{i}_{name}", fig, tot_n_samples
                                )
                torch.cuda.empty_cache()  # should be cleared at the first iter

            if (tot_it % conf.train.save_every_iter == 0 and tot_it > 0) and rank == 0:
                if results is None:
                    results, _, _ = do_evaluation(
                        model,
                        val_loader,
                        device,
                        loss_fn,
                        conf.train,
                        pbar=(rank == -1),
                    )
                    best_eval = results[conf.train.best_key]
                best_eval = save_experiment(
                    model,
                    optimizer,
                    lr_scheduler,
                    conf,
                    losses_,
                    results,
                    best_eval,
                    epoch,
                    tot_it,
                    output_dir,
                    stop,
                    args.distributed,
                )

            if stop:
                break

        if rank == 0:
            best_eval = save_experiment(
                model,
                optimizer,
                lr_scheduler,
                conf,
                losses_,
                results,
                best_eval,
                epoch,
                tot_it,
                output_dir=output_dir,
                stop=stop,
                distributed=args.distributed,
            )

        epoch += 1

    logger.info(f"Finished training on process {rank}.")
    if rank == 0:
        writer.close()


def main_worker(rank, conf, output_dir, args):
    if rank == 0:
        with capture_outputs(output_dir / "log.txt"):
            training(rank, conf, output_dir, args)
    else:
        training(rank, conf, output_dir, args)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("experiment", type=str)
    parser.add_argument("--conf", type=str)
    parser.add_argument(
        "--mixed_precision",
        "--mp",
        default=None,
        type=str,
        choices=["float16", "bfloat16"],
    )
    parser.add_argument(
        "--compile",
        default=None,
        type=str,
        choices=["default", "reduce-overhead", "max-autotune"],
    )
    parser.add_argument("--overfit", action="store_true")
    parser.add_argument("--restore", action="store_true")
    parser.add_argument("--distributed", action="store_true")
    parser.add_argument("--profile", action="store_true")
    parser.add_argument("--print_arch", "--pa", action="store_true")
    parser.add_argument("--detect_anomaly", "--da", action="store_true")
    parser.add_argument("--log_it", "--log_it", action="store_true")
    parser.add_argument("--no_eval_0", action="store_true")
    parser.add_argument("--run_benchmarks", action="store_true")
    parser.add_argument("dotlist", nargs="*")
    args = parser.parse_intermixed_args()

    logger.info(f"Starting experiment {args.experiment}")
    output_dir = Path(TRAINING_PATH, args.experiment)
    output_dir.mkdir(exist_ok=True, parents=True)

    conf = OmegaConf.from_cli(args.dotlist)
    if args.conf:
        conf = OmegaConf.merge(OmegaConf.load(args.conf), conf)
    elif args.restore:
        restore_conf = OmegaConf.load(output_dir / "config.yaml")
        conf = OmegaConf.merge(restore_conf, conf)
    if not args.restore:
        if conf.train.seed is None:
            conf.train.seed = torch.initial_seed() & (2**32 - 1)
        OmegaConf.save(conf, str(output_dir / "config.yaml"))

    # copy gluefactory and submodule into output dir
    for module in conf.train.get("submodules", []) + [__module_name__]:
        mod_dir = Path(__import__(str(module)).__file__).parent
        shutil.copytree(mod_dir, output_dir / module, dirs_exist_ok=True)

    if args.distributed:
        args.n_gpus = torch.cuda.device_count()
        args.lock_file = output_dir / "distributed_lock"
        if args.lock_file.exists():
            args.lock_file.unlink()
        torch.multiprocessing.spawn(
            main_worker, nprocs=args.n_gpus, args=(conf, output_dir, args)
        )
    else:
        main_worker(0, conf, output_dir, args)