File size: 13,256 Bytes
4d4dd90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Script to pre-process the CO3D dataset.
# Usage:
# python3 datasets_preprocess/preprocess_co3d.py --co3d_dir /path/to/co3d
# --------------------------------------------------------

import argparse
import random
import gzip
import json
import os
import os.path as osp

import torch
import PIL.Image
import numpy as np
import cv2

from tqdm.auto import tqdm
import matplotlib.pyplot as plt

import path_to_root  # noqa
import dust3r.datasets.utils.cropping as cropping  # noqa


CATEGORIES = [
    "apple", "backpack", "ball", "banana", "baseballbat", "baseballglove",
    "bench", "bicycle", "book", "bottle", "bowl", "broccoli", "cake", "car", "carrot",
    "cellphone", "chair", "couch", "cup", "donut", "frisbee", "hairdryer", "handbag",
    "hotdog", "hydrant", "keyboard", "kite", "laptop", "microwave",
    "motorcycle",
    "mouse", "orange", "parkingmeter", "pizza", "plant", "remote", "sandwich",
    "skateboard", "stopsign",
    "suitcase", "teddybear", "toaster", "toilet", "toybus",
    "toyplane", "toytrain", "toytruck",  "tv",
    "umbrella", "vase", "wineglass",
]
CATEGORIES_IDX = {cat: i for i, cat in enumerate(CATEGORIES)}  # for seeding

SINGLE_SEQUENCE_CATEGORIES = sorted(set(CATEGORIES) - set(["microwave", "stopsign", "tv"]))


def get_parser():
    parser = argparse.ArgumentParser()
    parser.add_argument("--category", type=str, default=None)
    parser.add_argument('--single_sequence_subset', default=False, action='store_true',
                        help="prepare the single_sequence_subset instead.")
    parser.add_argument("--output_dir", type=str, default="data/co3d_processed")
    parser.add_argument("--co3d_dir", type=str, required=True)
    parser.add_argument("--num_sequences_per_object", type=int, default=50)
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--min_quality", type=float, default=0.5, help="Minimum viewpoint quality score.")

    parser.add_argument("--img_size", type=int, default=512,
                        help=("lower dimension will be >= img_size * 3/4, and max dimension will be >= img_size"))
    return parser


def convert_ndc_to_pinhole(focal_length, principal_point, image_size):
    focal_length = np.array(focal_length)
    principal_point = np.array(principal_point)
    image_size_wh = np.array([image_size[1], image_size[0]])
    half_image_size = image_size_wh / 2
    rescale = half_image_size.min()
    principal_point_px = half_image_size - principal_point * rescale
    focal_length_px = focal_length * rescale
    fx, fy = focal_length_px[0], focal_length_px[1]
    cx, cy = principal_point_px[0], principal_point_px[1]
    K = np.array([[fx, 0.0, cx], [0.0, fy, cy], [0.0, 0.0, 1.0]], dtype=np.float32)
    return K


def opencv_from_cameras_projection(R, T, focal, p0, image_size):
    R = torch.from_numpy(R)[None, :, :]
    T = torch.from_numpy(T)[None, :]
    focal = torch.from_numpy(focal)[None, :]
    p0 = torch.from_numpy(p0)[None, :]
    image_size = torch.from_numpy(image_size)[None, :]

    R_pytorch3d = R.clone()
    T_pytorch3d = T.clone()
    focal_pytorch3d = focal
    p0_pytorch3d = p0
    T_pytorch3d[:, :2] *= -1
    R_pytorch3d[:, :, :2] *= -1
    tvec = T_pytorch3d
    R = R_pytorch3d.permute(0, 2, 1)

    # Retype the image_size correctly and flip to width, height.
    image_size_wh = image_size.to(R).flip(dims=(1,))

    # NDC to screen conversion.
    scale = image_size_wh.to(R).min(dim=1, keepdim=True)[0] / 2.0
    scale = scale.expand(-1, 2)
    c0 = image_size_wh / 2.0

    principal_point = -p0_pytorch3d * scale + c0
    focal_length = focal_pytorch3d * scale

    camera_matrix = torch.zeros_like(R)
    camera_matrix[:, :2, 2] = principal_point
    camera_matrix[:, 2, 2] = 1.0
    camera_matrix[:, 0, 0] = focal_length[:, 0]
    camera_matrix[:, 1, 1] = focal_length[:, 1]
    return R[0], tvec[0], camera_matrix[0]


def get_set_list(category_dir, split, is_single_sequence_subset=False):
    listfiles = os.listdir(osp.join(category_dir, "set_lists"))
    if is_single_sequence_subset:
        # not all objects have manyview_dev
        subset_list_files = [f for f in listfiles if "manyview_dev" in f]
    else:
        subset_list_files = [f for f in listfiles if f"fewview_train" in f]

    sequences_all = []
    for subset_list_file in subset_list_files:
        with open(osp.join(category_dir, "set_lists", subset_list_file)) as f:
            subset_lists_data = json.load(f)
            sequences_all.extend(subset_lists_data[split])

    return sequences_all


def prepare_sequences(category, co3d_dir, output_dir, img_size, split, min_quality, max_num_sequences_per_object,
                      seed, is_single_sequence_subset=False):
    random.seed(seed)
    category_dir = osp.join(co3d_dir, category)
    category_output_dir = osp.join(output_dir, category)
    sequences_all = get_set_list(category_dir, split, is_single_sequence_subset)
    sequences_numbers = sorted(set(seq_name for seq_name, _, _ in sequences_all))

    frame_file = osp.join(category_dir, "frame_annotations.jgz")
    sequence_file = osp.join(category_dir, "sequence_annotations.jgz")

    with gzip.open(frame_file, "r") as fin:
        frame_data = json.loads(fin.read())
    with gzip.open(sequence_file, "r") as fin:
        sequence_data = json.loads(fin.read())

    frame_data_processed = {}
    for f_data in frame_data:
        sequence_name = f_data["sequence_name"]
        frame_data_processed.setdefault(sequence_name, {})[f_data["frame_number"]] = f_data

    good_quality_sequences = set()
    for seq_data in sequence_data:
        if seq_data["viewpoint_quality_score"] > min_quality:
            good_quality_sequences.add(seq_data["sequence_name"])

    sequences_numbers = [seq_name for seq_name in sequences_numbers if seq_name in good_quality_sequences]
    if len(sequences_numbers) < max_num_sequences_per_object:
        selected_sequences_numbers = sequences_numbers
    else:
        selected_sequences_numbers = random.sample(sequences_numbers, max_num_sequences_per_object)

    selected_sequences_numbers_dict = {seq_name: [] for seq_name in selected_sequences_numbers}
    sequences_all = [(seq_name, frame_number, filepath)
                     for seq_name, frame_number, filepath in sequences_all
                     if seq_name in selected_sequences_numbers_dict]

    for seq_name, frame_number, filepath in tqdm(sequences_all):
        frame_idx = int(filepath.split('/')[-1][5:-4])
        selected_sequences_numbers_dict[seq_name].append(frame_idx)
        mask_path = filepath.replace("images", "masks").replace(".jpg", ".png")
        frame_data = frame_data_processed[seq_name][frame_number]
        focal_length = frame_data["viewpoint"]["focal_length"]
        principal_point = frame_data["viewpoint"]["principal_point"]
        image_size = frame_data["image"]["size"]
        K = convert_ndc_to_pinhole(focal_length, principal_point, image_size)
        R, tvec, camera_intrinsics = opencv_from_cameras_projection(np.array(frame_data["viewpoint"]["R"]),
                                                                    np.array(frame_data["viewpoint"]["T"]),
                                                                    np.array(focal_length),
                                                                    np.array(principal_point),
                                                                    np.array(image_size))

        frame_data = frame_data_processed[seq_name][frame_number]
        depth_path = os.path.join(co3d_dir, frame_data["depth"]["path"])
        assert frame_data["depth"]["scale_adjustment"] == 1.0
        image_path = os.path.join(co3d_dir, filepath)
        mask_path_full = os.path.join(co3d_dir, mask_path)

        input_rgb_image = PIL.Image.open(image_path).convert('RGB')
        input_mask = plt.imread(mask_path_full)

        with PIL.Image.open(depth_path) as depth_pil:
            # the image is stored with 16-bit depth but PIL reads it as I (32 bit).
            # we cast it to uint16, then reinterpret as float16, then cast to float32
            input_depthmap = (
                np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16)
                .astype(np.float32)
                .reshape((depth_pil.size[1], depth_pil.size[0])))
        depth_mask = np.stack((input_depthmap, input_mask), axis=-1)
        H, W = input_depthmap.shape

        camera_intrinsics = camera_intrinsics.numpy()
        cx, cy = camera_intrinsics[:2, 2].round().astype(int)
        min_margin_x = min(cx, W-cx)
        min_margin_y = min(cy, H-cy)

        # the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy)
        l, t = cx - min_margin_x, cy - min_margin_y
        r, b = cx + min_margin_x, cy + min_margin_y
        crop_bbox = (l, t, r, b)
        input_rgb_image, depth_mask, input_camera_intrinsics = cropping.crop_image_depthmap(
            input_rgb_image, depth_mask, camera_intrinsics, crop_bbox)

        # try to set the lower dimension to img_size * 3/4 -> img_size=512 => 384
        scale_final = ((img_size * 3 // 4) / min(H, W)) + 1e-8
        output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int)
        if max(output_resolution) < img_size:
            # let's put the max dimension to img_size
            scale_final = (img_size / max(H, W)) + 1e-8
            output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int)

        input_rgb_image, depth_mask, input_camera_intrinsics = cropping.rescale_image_depthmap(
            input_rgb_image, depth_mask, input_camera_intrinsics, output_resolution)
        input_depthmap = depth_mask[:, :, 0]
        input_mask = depth_mask[:, :, 1]

        # generate and adjust camera pose
        camera_pose = np.eye(4, dtype=np.float32)
        camera_pose[:3, :3] = R
        camera_pose[:3,  3] = tvec
        camera_pose = np.linalg.inv(camera_pose)

        # save crop images and depth, metadata
        save_img_path = os.path.join(output_dir, filepath)
        save_depth_path = os.path.join(output_dir, frame_data["depth"]["path"])
        save_mask_path = os.path.join(output_dir, mask_path)
        os.makedirs(os.path.split(save_img_path)[0], exist_ok=True)
        os.makedirs(os.path.split(save_depth_path)[0], exist_ok=True)
        os.makedirs(os.path.split(save_mask_path)[0], exist_ok=True)

        input_rgb_image.save(save_img_path)
        scaled_depth_map = (input_depthmap / np.max(input_depthmap) * 65535).astype(np.uint16)
        cv2.imwrite(save_depth_path, scaled_depth_map)
        cv2.imwrite(save_mask_path, (input_mask * 255).astype(np.uint8))

        save_meta_path = save_img_path.replace('jpg', 'npz')
        np.savez(save_meta_path, camera_intrinsics=input_camera_intrinsics,
                 camera_pose=camera_pose, maximum_depth=np.max(input_depthmap))

    return selected_sequences_numbers_dict


if __name__ == "__main__":
    parser = get_parser()
    args = parser.parse_args()
    assert args.co3d_dir != args.output_dir
    if args.category is None:
        if args.single_sequence_subset:
            categories = SINGLE_SEQUENCE_CATEGORIES
        else:
            categories = CATEGORIES
    else:
        categories = [args.category]
    os.makedirs(args.output_dir, exist_ok=True)

    for split in ['train', 'test']:
        selected_sequences_path = os.path.join(args.output_dir, f'selected_seqs_{split}.json')
        if os.path.isfile(selected_sequences_path):
            continue

        all_selected_sequences = {}
        for category in categories:
            category_output_dir = osp.join(args.output_dir, category)
            os.makedirs(category_output_dir, exist_ok=True)
            category_selected_sequences_path = os.path.join(category_output_dir, f'selected_seqs_{split}.json')
            if os.path.isfile(category_selected_sequences_path):
                with open(category_selected_sequences_path, 'r') as fid:
                    category_selected_sequences = json.load(fid)
            else:
                print(f"Processing {split} - category = {category}")
                category_selected_sequences = prepare_sequences(
                    category=category,
                    co3d_dir=args.co3d_dir,
                    output_dir=args.output_dir,
                    img_size=args.img_size,
                    split=split,
                    min_quality=args.min_quality,
                    max_num_sequences_per_object=args.num_sequences_per_object,
                    seed=args.seed + CATEGORIES_IDX[category],
                    is_single_sequence_subset=args.single_sequence_subset
                )
                with open(category_selected_sequences_path, 'w') as file:
                    json.dump(category_selected_sequences, file)

            all_selected_sequences[category] = category_selected_sequences
        with open(selected_sequences_path, 'w') as file:
            json.dump(all_selected_sequences, file)