Spaces:
Running
Running
File size: 13,256 Bytes
4d4dd90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Script to pre-process the CO3D dataset.
# Usage:
# python3 datasets_preprocess/preprocess_co3d.py --co3d_dir /path/to/co3d
# --------------------------------------------------------
import argparse
import random
import gzip
import json
import os
import os.path as osp
import torch
import PIL.Image
import numpy as np
import cv2
from tqdm.auto import tqdm
import matplotlib.pyplot as plt
import path_to_root # noqa
import dust3r.datasets.utils.cropping as cropping # noqa
CATEGORIES = [
"apple", "backpack", "ball", "banana", "baseballbat", "baseballglove",
"bench", "bicycle", "book", "bottle", "bowl", "broccoli", "cake", "car", "carrot",
"cellphone", "chair", "couch", "cup", "donut", "frisbee", "hairdryer", "handbag",
"hotdog", "hydrant", "keyboard", "kite", "laptop", "microwave",
"motorcycle",
"mouse", "orange", "parkingmeter", "pizza", "plant", "remote", "sandwich",
"skateboard", "stopsign",
"suitcase", "teddybear", "toaster", "toilet", "toybus",
"toyplane", "toytrain", "toytruck", "tv",
"umbrella", "vase", "wineglass",
]
CATEGORIES_IDX = {cat: i for i, cat in enumerate(CATEGORIES)} # for seeding
SINGLE_SEQUENCE_CATEGORIES = sorted(set(CATEGORIES) - set(["microwave", "stopsign", "tv"]))
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--category", type=str, default=None)
parser.add_argument('--single_sequence_subset', default=False, action='store_true',
help="prepare the single_sequence_subset instead.")
parser.add_argument("--output_dir", type=str, default="data/co3d_processed")
parser.add_argument("--co3d_dir", type=str, required=True)
parser.add_argument("--num_sequences_per_object", type=int, default=50)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--min_quality", type=float, default=0.5, help="Minimum viewpoint quality score.")
parser.add_argument("--img_size", type=int, default=512,
help=("lower dimension will be >= img_size * 3/4, and max dimension will be >= img_size"))
return parser
def convert_ndc_to_pinhole(focal_length, principal_point, image_size):
focal_length = np.array(focal_length)
principal_point = np.array(principal_point)
image_size_wh = np.array([image_size[1], image_size[0]])
half_image_size = image_size_wh / 2
rescale = half_image_size.min()
principal_point_px = half_image_size - principal_point * rescale
focal_length_px = focal_length * rescale
fx, fy = focal_length_px[0], focal_length_px[1]
cx, cy = principal_point_px[0], principal_point_px[1]
K = np.array([[fx, 0.0, cx], [0.0, fy, cy], [0.0, 0.0, 1.0]], dtype=np.float32)
return K
def opencv_from_cameras_projection(R, T, focal, p0, image_size):
R = torch.from_numpy(R)[None, :, :]
T = torch.from_numpy(T)[None, :]
focal = torch.from_numpy(focal)[None, :]
p0 = torch.from_numpy(p0)[None, :]
image_size = torch.from_numpy(image_size)[None, :]
R_pytorch3d = R.clone()
T_pytorch3d = T.clone()
focal_pytorch3d = focal
p0_pytorch3d = p0
T_pytorch3d[:, :2] *= -1
R_pytorch3d[:, :, :2] *= -1
tvec = T_pytorch3d
R = R_pytorch3d.permute(0, 2, 1)
# Retype the image_size correctly and flip to width, height.
image_size_wh = image_size.to(R).flip(dims=(1,))
# NDC to screen conversion.
scale = image_size_wh.to(R).min(dim=1, keepdim=True)[0] / 2.0
scale = scale.expand(-1, 2)
c0 = image_size_wh / 2.0
principal_point = -p0_pytorch3d * scale + c0
focal_length = focal_pytorch3d * scale
camera_matrix = torch.zeros_like(R)
camera_matrix[:, :2, 2] = principal_point
camera_matrix[:, 2, 2] = 1.0
camera_matrix[:, 0, 0] = focal_length[:, 0]
camera_matrix[:, 1, 1] = focal_length[:, 1]
return R[0], tvec[0], camera_matrix[0]
def get_set_list(category_dir, split, is_single_sequence_subset=False):
listfiles = os.listdir(osp.join(category_dir, "set_lists"))
if is_single_sequence_subset:
# not all objects have manyview_dev
subset_list_files = [f for f in listfiles if "manyview_dev" in f]
else:
subset_list_files = [f for f in listfiles if f"fewview_train" in f]
sequences_all = []
for subset_list_file in subset_list_files:
with open(osp.join(category_dir, "set_lists", subset_list_file)) as f:
subset_lists_data = json.load(f)
sequences_all.extend(subset_lists_data[split])
return sequences_all
def prepare_sequences(category, co3d_dir, output_dir, img_size, split, min_quality, max_num_sequences_per_object,
seed, is_single_sequence_subset=False):
random.seed(seed)
category_dir = osp.join(co3d_dir, category)
category_output_dir = osp.join(output_dir, category)
sequences_all = get_set_list(category_dir, split, is_single_sequence_subset)
sequences_numbers = sorted(set(seq_name for seq_name, _, _ in sequences_all))
frame_file = osp.join(category_dir, "frame_annotations.jgz")
sequence_file = osp.join(category_dir, "sequence_annotations.jgz")
with gzip.open(frame_file, "r") as fin:
frame_data = json.loads(fin.read())
with gzip.open(sequence_file, "r") as fin:
sequence_data = json.loads(fin.read())
frame_data_processed = {}
for f_data in frame_data:
sequence_name = f_data["sequence_name"]
frame_data_processed.setdefault(sequence_name, {})[f_data["frame_number"]] = f_data
good_quality_sequences = set()
for seq_data in sequence_data:
if seq_data["viewpoint_quality_score"] > min_quality:
good_quality_sequences.add(seq_data["sequence_name"])
sequences_numbers = [seq_name for seq_name in sequences_numbers if seq_name in good_quality_sequences]
if len(sequences_numbers) < max_num_sequences_per_object:
selected_sequences_numbers = sequences_numbers
else:
selected_sequences_numbers = random.sample(sequences_numbers, max_num_sequences_per_object)
selected_sequences_numbers_dict = {seq_name: [] for seq_name in selected_sequences_numbers}
sequences_all = [(seq_name, frame_number, filepath)
for seq_name, frame_number, filepath in sequences_all
if seq_name in selected_sequences_numbers_dict]
for seq_name, frame_number, filepath in tqdm(sequences_all):
frame_idx = int(filepath.split('/')[-1][5:-4])
selected_sequences_numbers_dict[seq_name].append(frame_idx)
mask_path = filepath.replace("images", "masks").replace(".jpg", ".png")
frame_data = frame_data_processed[seq_name][frame_number]
focal_length = frame_data["viewpoint"]["focal_length"]
principal_point = frame_data["viewpoint"]["principal_point"]
image_size = frame_data["image"]["size"]
K = convert_ndc_to_pinhole(focal_length, principal_point, image_size)
R, tvec, camera_intrinsics = opencv_from_cameras_projection(np.array(frame_data["viewpoint"]["R"]),
np.array(frame_data["viewpoint"]["T"]),
np.array(focal_length),
np.array(principal_point),
np.array(image_size))
frame_data = frame_data_processed[seq_name][frame_number]
depth_path = os.path.join(co3d_dir, frame_data["depth"]["path"])
assert frame_data["depth"]["scale_adjustment"] == 1.0
image_path = os.path.join(co3d_dir, filepath)
mask_path_full = os.path.join(co3d_dir, mask_path)
input_rgb_image = PIL.Image.open(image_path).convert('RGB')
input_mask = plt.imread(mask_path_full)
with PIL.Image.open(depth_path) as depth_pil:
# the image is stored with 16-bit depth but PIL reads it as I (32 bit).
# we cast it to uint16, then reinterpret as float16, then cast to float32
input_depthmap = (
np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16)
.astype(np.float32)
.reshape((depth_pil.size[1], depth_pil.size[0])))
depth_mask = np.stack((input_depthmap, input_mask), axis=-1)
H, W = input_depthmap.shape
camera_intrinsics = camera_intrinsics.numpy()
cx, cy = camera_intrinsics[:2, 2].round().astype(int)
min_margin_x = min(cx, W-cx)
min_margin_y = min(cy, H-cy)
# the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy)
l, t = cx - min_margin_x, cy - min_margin_y
r, b = cx + min_margin_x, cy + min_margin_y
crop_bbox = (l, t, r, b)
input_rgb_image, depth_mask, input_camera_intrinsics = cropping.crop_image_depthmap(
input_rgb_image, depth_mask, camera_intrinsics, crop_bbox)
# try to set the lower dimension to img_size * 3/4 -> img_size=512 => 384
scale_final = ((img_size * 3 // 4) / min(H, W)) + 1e-8
output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int)
if max(output_resolution) < img_size:
# let's put the max dimension to img_size
scale_final = (img_size / max(H, W)) + 1e-8
output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int)
input_rgb_image, depth_mask, input_camera_intrinsics = cropping.rescale_image_depthmap(
input_rgb_image, depth_mask, input_camera_intrinsics, output_resolution)
input_depthmap = depth_mask[:, :, 0]
input_mask = depth_mask[:, :, 1]
# generate and adjust camera pose
camera_pose = np.eye(4, dtype=np.float32)
camera_pose[:3, :3] = R
camera_pose[:3, 3] = tvec
camera_pose = np.linalg.inv(camera_pose)
# save crop images and depth, metadata
save_img_path = os.path.join(output_dir, filepath)
save_depth_path = os.path.join(output_dir, frame_data["depth"]["path"])
save_mask_path = os.path.join(output_dir, mask_path)
os.makedirs(os.path.split(save_img_path)[0], exist_ok=True)
os.makedirs(os.path.split(save_depth_path)[0], exist_ok=True)
os.makedirs(os.path.split(save_mask_path)[0], exist_ok=True)
input_rgb_image.save(save_img_path)
scaled_depth_map = (input_depthmap / np.max(input_depthmap) * 65535).astype(np.uint16)
cv2.imwrite(save_depth_path, scaled_depth_map)
cv2.imwrite(save_mask_path, (input_mask * 255).astype(np.uint8))
save_meta_path = save_img_path.replace('jpg', 'npz')
np.savez(save_meta_path, camera_intrinsics=input_camera_intrinsics,
camera_pose=camera_pose, maximum_depth=np.max(input_depthmap))
return selected_sequences_numbers_dict
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
assert args.co3d_dir != args.output_dir
if args.category is None:
if args.single_sequence_subset:
categories = SINGLE_SEQUENCE_CATEGORIES
else:
categories = CATEGORIES
else:
categories = [args.category]
os.makedirs(args.output_dir, exist_ok=True)
for split in ['train', 'test']:
selected_sequences_path = os.path.join(args.output_dir, f'selected_seqs_{split}.json')
if os.path.isfile(selected_sequences_path):
continue
all_selected_sequences = {}
for category in categories:
category_output_dir = osp.join(args.output_dir, category)
os.makedirs(category_output_dir, exist_ok=True)
category_selected_sequences_path = os.path.join(category_output_dir, f'selected_seqs_{split}.json')
if os.path.isfile(category_selected_sequences_path):
with open(category_selected_sequences_path, 'r') as fid:
category_selected_sequences = json.load(fid)
else:
print(f"Processing {split} - category = {category}")
category_selected_sequences = prepare_sequences(
category=category,
co3d_dir=args.co3d_dir,
output_dir=args.output_dir,
img_size=args.img_size,
split=split,
min_quality=args.min_quality,
max_num_sequences_per_object=args.num_sequences_per_object,
seed=args.seed + CATEGORIES_IDX[category],
is_single_sequence_subset=args.single_sequence_subset
)
with open(category_selected_sequences_path, 'w') as file:
json.dump(category_selected_sequences, file)
all_selected_sequences[category] = category_selected_sequences
with open(selected_sequences_path, 'w') as file:
json.dump(all_selected_sequences, file)
|