Spaces:
Running
Running
File size: 4,648 Bytes
c608946 9cde3b4 c608946 9cde3b4 c608946 9cde3b4 c608946 9cde3b4 c608946 9cde3b4 c608946 9cde3b4 c608946 9cde3b4 c608946 9cde3b4 c608946 9cde3b4 c608946 9cde3b4 c608946 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import torch
import numpy as np
import tqdm
from roma.datasets import MegadepthBuilder
from roma.utils import warp_kpts
from torch.utils.data import ConcatDataset
import roma
class MegadepthDenseBenchmark:
def __init__(self, data_root="data/megadepth", h = 384, w = 512, num_samples = 2000) -> None:
mega = MegadepthBuilder(data_root=data_root)
self.dataset = ConcatDataset(
mega.build_scenes(split="test_loftr", ht=h, wt=w)
) # fixed resolution of 384,512
self.num_samples = num_samples
def geometric_dist(self, depth1, depth2, T_1to2, K1, K2, dense_matches):
b, h1, w1, d = dense_matches.shape
with torch.no_grad():
x1 = dense_matches[..., :2].reshape(b, h1 * w1, 2)
mask, x2 = warp_kpts(
x1.double(),
depth1.double(),
depth2.double(),
T_1to2.double(),
K1.double(),
K2.double(),
)
x2 = torch.stack(
(w1 * (x2[..., 0] + 1) / 2, h1 * (x2[..., 1] + 1) / 2), dim=-1
)
prob = mask.float().reshape(b, h1, w1)
x2_hat = dense_matches[..., 2:]
x2_hat = torch.stack(
(w1 * (x2_hat[..., 0] + 1) / 2, h1 * (x2_hat[..., 1] + 1) / 2), dim=-1
)
gd = (x2_hat - x2.reshape(b, h1, w1, 2)).norm(dim=-1)
gd = gd[prob == 1]
pck_1 = (gd < 1.0).float().mean()
pck_3 = (gd < 3.0).float().mean()
pck_5 = (gd < 5.0).float().mean()
return gd, pck_1, pck_3, pck_5, prob
def benchmark(self, model, batch_size=8):
model.train(False)
with torch.no_grad():
gd_tot = 0.0
pck_1_tot = 0.0
pck_3_tot = 0.0
pck_5_tot = 0.0
sampler = torch.utils.data.WeightedRandomSampler(
torch.ones(len(self.dataset)), replacement=False, num_samples=self.num_samples
)
B = batch_size
dataloader = torch.utils.data.DataLoader(
self.dataset, batch_size=B, num_workers=batch_size, sampler=sampler
)
for idx, data in tqdm.tqdm(enumerate(dataloader), disable = roma.RANK > 0):
im_A, im_B, depth1, depth2, T_1to2, K1, K2 = (
data["im_A"],
data["im_B"],
data["im_A_depth"].cuda(),
data["im_B_depth"].cuda(),
data["T_1to2"].cuda(),
data["K1"].cuda(),
data["K2"].cuda(),
)
matches, certainty = model.match(im_A, im_B, batched=True)
gd, pck_1, pck_3, pck_5, prob = self.geometric_dist(
depth1, depth2, T_1to2, K1, K2, matches
)
if roma.DEBUG_MODE:
from roma.utils.utils import tensor_to_pil
import torch.nn.functional as F
path = "vis"
H, W = model.get_output_resolution()
white_im = torch.ones((B,1,H,W),device="cuda")
im_B_transfer_rgb = F.grid_sample(
im_B.cuda(), matches[:,:,:W, 2:], mode="bilinear", align_corners=False
)
warp_im = im_B_transfer_rgb
c_b = certainty[:,None]#(certainty*0.9 + 0.1*torch.ones_like(certainty))[:,None]
vis_im = c_b * warp_im + (1 - c_b) * white_im
for b in range(B):
import os
os.makedirs(f"{path}/{model.name}/{idx}_{b}_{H}_{W}",exist_ok=True)
tensor_to_pil(vis_im[b], unnormalize=True).save(
f"{path}/{model.name}/{idx}_{b}_{H}_{W}/warp.jpg")
tensor_to_pil(im_A[b].cuda(), unnormalize=True).save(
f"{path}/{model.name}/{idx}_{b}_{H}_{W}/im_A.jpg")
tensor_to_pil(im_B[b].cuda(), unnormalize=True).save(
f"{path}/{model.name}/{idx}_{b}_{H}_{W}/im_B.jpg")
gd_tot, pck_1_tot, pck_3_tot, pck_5_tot = (
gd_tot + gd.mean(),
pck_1_tot + pck_1,
pck_3_tot + pck_3,
pck_5_tot + pck_5,
)
return {
"epe": gd_tot.item() / len(dataloader),
"mega_pck_1": pck_1_tot.item() / len(dataloader),
"mega_pck_3": pck_3_tot.item() / len(dataloader),
"mega_pck_5": pck_5_tot.item() / len(dataloader),
}
|