Spaces:
Running
Running
File size: 5,856 Bytes
a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import argparse
import glob
import math
import subprocess
import numpy as np
import os
import tqdm
import torch
import torch.nn as nn
import cv2
from darkfeat import DarkFeat
from utils import matching
def darkfeat_pre(img, cuda):
H, W = img.shape[0], img.shape[1]
inp = img.copy()
inp = inp.transpose(2, 0, 1)
inp = torch.from_numpy(inp)
inp = torch.autograd.Variable(inp).view(1, 3, H, W)
if cuda:
inp = inp.cuda()
return inp
if __name__ == "__main__":
# Parse command line arguments.
parser = argparse.ArgumentParser()
parser.add_argument("--H", type=int, default=int(640))
parser.add_argument("--W", type=int, default=int(960))
parser.add_argument("--histeq", action="store_true")
parser.add_argument("--model_path", type=str)
parser.add_argument("--dataset_dir", type=str, default="/data/hyz/MID/")
opt = parser.parse_args()
sizer = (opt.W, opt.H)
focallength_x = 4.504986436499113e03 / (6744 / sizer[0])
focallength_y = 4.513311442889859e03 / (4502 / sizer[1])
K = np.eye(3)
K[0, 0] = focallength_x
K[1, 1] = focallength_y
K[0, 2] = 3.363322177533149e03 / (6744 / sizer[0]) # * 0.5
K[1, 2] = 2.291824660547715e03 / (4502 / sizer[1]) # * 0.5
Kinv = np.linalg.inv(K)
Kinvt = np.transpose(Kinv)
cuda = True
if cuda:
darkfeat = DarkFeat(opt.model_path).cuda().eval()
for scene in ["Indoor", "Outdoor"]:
base_save = "./result/" + scene + "/"
dir_base = opt.dataset_dir + "/" + scene + "/"
pair_list = sorted(os.listdir(dir_base))
for pair in tqdm.tqdm(pair_list):
opention = 1
if scene == "Outdoor":
pass
else:
if int(pair[4::]) <= 17:
opention = 0
else:
pass
name = []
files = sorted(os.listdir(dir_base + pair))
for file_ in files:
if file_.endswith(".cr2"):
name.append(file_[0:9])
ISO = [
"00100",
"00200",
"00400",
"00800",
"01600",
"03200",
"06400",
"12800",
]
if opention == 1:
Shutter_speed = ["0.005", "0.01", "0.025", "0.05", "0.17", "0.5"]
else:
Shutter_speed = ["0.01", "0.02", "0.05", "0.1", "0.3", "1"]
E_GT = np.load(dir_base + pair + "/GT_Correspondence/" + "E_estimated.npy")
F_GT = np.dot(np.dot(Kinvt, E_GT), Kinv)
R_GT = np.load(dir_base + pair + "/GT_Correspondence/" + "R_GT.npy")
t_GT = np.load(dir_base + pair + "/GT_Correspondence/" + "T_GT.npy")
id0, id1 = sorted(
[int(i.split("/")[-1]) for i in glob.glob(f"{dir_base+pair}/?????")]
)
cnt = 0
for iso in ISO:
for ex in Shutter_speed:
dark_name1 = name[0] + iso + "_" + ex + "_" + scene + ".npy"
dark_name2 = name[1] + iso + "_" + ex + "_" + scene + ".npy"
if not opt.histeq:
dst_T1_None = (
f"{dir_base}{pair}/{id0:05d}-npy-nohisteq/{dark_name1}"
)
dst_T2_None = (
f"{dir_base}{pair}/{id1:05d}-npy-nohisteq/{dark_name2}"
)
img1_orig_None = np.load(dst_T1_None)
img2_orig_None = np.load(dst_T2_None)
dir_save = base_save + pair + "/None/"
img_input1 = darkfeat_pre(
img1_orig_None.astype("float32") / 255.0, cuda
)
img_input2 = darkfeat_pre(
img2_orig_None.astype("float32") / 255.0, cuda
)
else:
dst_T1_histeq = f"{dir_base}{pair}/{id0:05d}-npy/{dark_name1}"
dst_T2_histeq = f"{dir_base}{pair}/{id1:05d}-npy/{dark_name2}"
img1_orig_histeq = np.load(dst_T1_histeq)
img2_orig_histeq = np.load(dst_T2_histeq)
dir_save = base_save + pair + "/HistEQ/"
img_input1 = darkfeat_pre(
img1_orig_histeq.astype("float32") / 255.0, cuda
)
img_input2 = darkfeat_pre(
img2_orig_histeq.astype("float32") / 255.0, cuda
)
result1 = darkfeat({"image": img_input1})
result2 = darkfeat({"image": img_input2})
mkpts0, mkpts1, _ = matching.match_descriptors(
cv2.KeyPoint_convert(
result1["keypoints"].detach().cpu().float().numpy()
),
result1["descriptors"].detach().cpu().numpy(),
cv2.KeyPoint_convert(
result2["keypoints"].detach().cpu().float().numpy()
),
result2["descriptors"].detach().cpu().numpy(),
ORB=False,
)
POINT_1_dir = dir_save + f"DarkFeat/POINT_1/"
POINT_2_dir = dir_save + f"DarkFeat/POINT_2/"
subprocess.check_output(["mkdir", "-p", POINT_1_dir])
subprocess.check_output(["mkdir", "-p", POINT_2_dir])
np.save(POINT_1_dir + dark_name1[0:-3] + "npy", mkpts0)
np.save(POINT_2_dir + dark_name2[0:-3] + "npy", mkpts1)
|