File size: 5,856 Bytes
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
 
 
 
 
 
 
 
 
c74a070
 
a80d6bb
 
c74a070
 
 
 
 
a80d6bb
 
 
c74a070
 
a80d6bb
c74a070
 
 
 
a80d6bb
 
 
 
 
 
 
c74a070
 
 
a80d6bb
 
 
 
c74a070
a80d6bb
 
 
 
 
 
c74a070
 
a80d6bb
c74a070
a80d6bb
c74a070
 
 
 
 
 
 
 
 
 
a80d6bb
c74a070
a80d6bb
c74a070
a80d6bb
c74a070
 
 
 
a80d6bb
c74a070
 
 
a80d6bb
 
 
 
 
c74a070
 
a80d6bb
 
c74a070
 
 
 
 
 
a80d6bb
 
 
 
c74a070
a80d6bb
c74a070
 
 
 
 
 
a80d6bb
 
c74a070
 
a80d6bb
 
 
 
c74a070
a80d6bb
c74a070
 
 
 
 
 
a80d6bb
c74a070
 
a80d6bb
 
c74a070
 
 
 
 
 
 
 
 
a80d6bb
 
c74a070
 
a80d6bb
c74a070
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import argparse
import glob
import math
import subprocess
import numpy as np
import os
import tqdm
import torch
import torch.nn as nn
import cv2
from darkfeat import DarkFeat
from utils import matching


def darkfeat_pre(img, cuda):
    H, W = img.shape[0], img.shape[1]
    inp = img.copy()
    inp = inp.transpose(2, 0, 1)
    inp = torch.from_numpy(inp)
    inp = torch.autograd.Variable(inp).view(1, 3, H, W)
    if cuda:
        inp = inp.cuda()
    return inp


if __name__ == "__main__":
    # Parse command line arguments.
    parser = argparse.ArgumentParser()
    parser.add_argument("--H", type=int, default=int(640))
    parser.add_argument("--W", type=int, default=int(960))
    parser.add_argument("--histeq", action="store_true")
    parser.add_argument("--model_path", type=str)
    parser.add_argument("--dataset_dir", type=str, default="/data/hyz/MID/")
    opt = parser.parse_args()

    sizer = (opt.W, opt.H)
    focallength_x = 4.504986436499113e03 / (6744 / sizer[0])
    focallength_y = 4.513311442889859e03 / (4502 / sizer[1])
    K = np.eye(3)
    K[0, 0] = focallength_x
    K[1, 1] = focallength_y
    K[0, 2] = 3.363322177533149e03 / (6744 / sizer[0])  # * 0.5
    K[1, 2] = 2.291824660547715e03 / (4502 / sizer[1])  # * 0.5
    Kinv = np.linalg.inv(K)
    Kinvt = np.transpose(Kinv)

    cuda = True
    if cuda:
        darkfeat = DarkFeat(opt.model_path).cuda().eval()

    for scene in ["Indoor", "Outdoor"]:
        base_save = "./result/" + scene + "/"
        dir_base = opt.dataset_dir + "/" + scene + "/"
        pair_list = sorted(os.listdir(dir_base))

        for pair in tqdm.tqdm(pair_list):
            opention = 1
            if scene == "Outdoor":
                pass
            else:
                if int(pair[4::]) <= 17:
                    opention = 0
                else:
                    pass
            name = []
            files = sorted(os.listdir(dir_base + pair))
            for file_ in files:
                if file_.endswith(".cr2"):
                    name.append(file_[0:9])
            ISO = [
                "00100",
                "00200",
                "00400",
                "00800",
                "01600",
                "03200",
                "06400",
                "12800",
            ]
            if opention == 1:
                Shutter_speed = ["0.005", "0.01", "0.025", "0.05", "0.17", "0.5"]
            else:
                Shutter_speed = ["0.01", "0.02", "0.05", "0.1", "0.3", "1"]

            E_GT = np.load(dir_base + pair + "/GT_Correspondence/" + "E_estimated.npy")
            F_GT = np.dot(np.dot(Kinvt, E_GT), Kinv)
            R_GT = np.load(dir_base + pair + "/GT_Correspondence/" + "R_GT.npy")
            t_GT = np.load(dir_base + pair + "/GT_Correspondence/" + "T_GT.npy")

            id0, id1 = sorted(
                [int(i.split("/")[-1]) for i in glob.glob(f"{dir_base+pair}/?????")]
            )

            cnt = 0

            for iso in ISO:
                for ex in Shutter_speed:
                    dark_name1 = name[0] + iso + "_" + ex + "_" + scene + ".npy"
                    dark_name2 = name[1] + iso + "_" + ex + "_" + scene + ".npy"

                    if not opt.histeq:
                        dst_T1_None = (
                            f"{dir_base}{pair}/{id0:05d}-npy-nohisteq/{dark_name1}"
                        )
                        dst_T2_None = (
                            f"{dir_base}{pair}/{id1:05d}-npy-nohisteq/{dark_name2}"
                        )

                        img1_orig_None = np.load(dst_T1_None)
                        img2_orig_None = np.load(dst_T2_None)

                        dir_save = base_save + pair + "/None/"

                        img_input1 = darkfeat_pre(
                            img1_orig_None.astype("float32") / 255.0, cuda
                        )
                        img_input2 = darkfeat_pre(
                            img2_orig_None.astype("float32") / 255.0, cuda
                        )

                    else:
                        dst_T1_histeq = f"{dir_base}{pair}/{id0:05d}-npy/{dark_name1}"
                        dst_T2_histeq = f"{dir_base}{pair}/{id1:05d}-npy/{dark_name2}"

                        img1_orig_histeq = np.load(dst_T1_histeq)
                        img2_orig_histeq = np.load(dst_T2_histeq)

                        dir_save = base_save + pair + "/HistEQ/"

                        img_input1 = darkfeat_pre(
                            img1_orig_histeq.astype("float32") / 255.0, cuda
                        )
                        img_input2 = darkfeat_pre(
                            img2_orig_histeq.astype("float32") / 255.0, cuda
                        )

                    result1 = darkfeat({"image": img_input1})
                    result2 = darkfeat({"image": img_input2})

                    mkpts0, mkpts1, _ = matching.match_descriptors(
                        cv2.KeyPoint_convert(
                            result1["keypoints"].detach().cpu().float().numpy()
                        ),
                        result1["descriptors"].detach().cpu().numpy(),
                        cv2.KeyPoint_convert(
                            result2["keypoints"].detach().cpu().float().numpy()
                        ),
                        result2["descriptors"].detach().cpu().numpy(),
                        ORB=False,
                    )

                    POINT_1_dir = dir_save + f"DarkFeat/POINT_1/"
                    POINT_2_dir = dir_save + f"DarkFeat/POINT_2/"

                    subprocess.check_output(["mkdir", "-p", POINT_1_dir])
                    subprocess.check_output(["mkdir", "-p", POINT_2_dir])
                    np.save(POINT_1_dir + dark_name1[0:-3] + "npy", mkpts0)
                    np.save(POINT_2_dir + dark_name2[0:-3] + "npy", mkpts1)