Spaces:
Running
Running
File size: 1,710 Bytes
9cde3b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
from PIL import Image
import torch
import torch.nn.functional as F
import numpy as np
from roma.utils.utils import tensor_to_pil
from roma import roma_outdoor
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if __name__ == "__main__":
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("--im_A_path", default="assets/toronto_A.jpg", type=str)
parser.add_argument("--im_B_path", default="assets/toronto_B.jpg", type=str)
parser.add_argument("--save_path", default="demo/gif/roma_warp_toronto", type=str)
args, _ = parser.parse_known_args()
im1_path = args.im_A_path
im2_path = args.im_B_path
save_path = args.save_path
# Create model
roma_model = roma_outdoor(device=device, coarse_res=560, upsample_res=(864, 1152))
roma_model.symmetric = False
H, W = roma_model.get_output_resolution()
im1 = Image.open(im1_path).resize((W, H))
im2 = Image.open(im2_path).resize((W, H))
# Match
warp, certainty = roma_model.match(im1_path, im2_path, device=device)
# Sampling not needed, but can be done with model.sample(warp, certainty)
x1 = (torch.tensor(np.array(im1)) / 255).to(device).permute(2, 0, 1)
x2 = (torch.tensor(np.array(im2)) / 255).to(device).permute(2, 0, 1)
coords_A, coords_B = warp[...,:2], warp[...,2:]
for i, x in enumerate(np.linspace(0,2*np.pi,200)):
t = (1 + np.cos(x))/2
interp_warp = (1-t)*coords_A + t*coords_B
im2_transfer_rgb = F.grid_sample(
x2[None], interp_warp[None], mode="bilinear", align_corners=False
)[0]
tensor_to_pil(im2_transfer_rgb, unnormalize=False).save(f"{save_path}_{i:03d}.jpg") |