Spaces:
Running
Running
File size: 3,417 Bytes
10dcc2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
'''
Feature-free COTR guided matching for keypoints.
We use DISK(https://github.com/cvlab-epfl/disk) keypoints location.
We apply RANSAC + F matrix to further prune outliers.
Note: This script doesn't use descriptors.
'''
import argparse
import os
import time
import cv2
import numpy as np
import torch
import imageio
from scipy.spatial import distance_matrix
from COTR.utils import utils, debug_utils
from COTR.models import build_model
from COTR.options.options import *
from COTR.options.options_utils import *
from COTR.inference.sparse_engine import SparseEngine, FasterSparseEngine
utils.fix_randomness(0)
torch.set_grad_enabled(False)
def main(opt):
model = build_model(opt)
model = model.cuda()
weights = torch.load(opt.load_weights_path)['model_state_dict']
utils.safe_load_weights(model, weights)
model = model.eval()
img_a = imageio.imread('./sample_data/imgs/21526113_4379776807.jpg')
img_b = imageio.imread('./sample_data/imgs/21126421_4537535153.jpg')
kp_a = np.load('./sample_data/21526113_4379776807.jpg.disk.kpts.npy')
kp_b = np.load('./sample_data/21126421_4537535153.jpg.disk.kpts.npy')
if opt.faster_infer:
engine = FasterSparseEngine(model, 32, mode='tile')
else:
engine = SparseEngine(model, 32, mode='tile')
t0 = time.time()
corrs_a_b = engine.cotr_corr_multiscale(img_a, img_b, np.linspace(0.5, 0.0625, 4), 1, max_corrs=kp_a.shape[0], queries_a=kp_a, force=True)
corrs_b_a = engine.cotr_corr_multiscale(img_b, img_a, np.linspace(0.5, 0.0625, 4), 1, max_corrs=kp_b.shape[0], queries_a=kp_b, force=True)
t1 = time.time()
print(f'COTR spent {t1-t0} seconds.')
inds_a_b = np.argmin(distance_matrix(corrs_a_b[:, 2:], kp_b), axis=1)
matched_a_b = np.stack([np.arange(kp_a.shape[0]), inds_a_b]).T
inds_b_a = np.argmin(distance_matrix(corrs_b_a[:, 2:], kp_a), axis=1)
matched_b_a = np.stack([np.arange(kp_b.shape[0]), inds_b_a]).T
good = 0
final_matches = []
for m_ab in matched_a_b:
for m_ba in matched_b_a:
if (m_ab == m_ba[::-1]).all():
good += 1
final_matches.append(m_ab)
break
final_matches = np.array(final_matches)
final_corrs = np.concatenate([kp_a[final_matches[:, 0]], kp_b[final_matches[:, 1]]], axis=1)
_, mask = cv2.findFundamentalMat(final_corrs[:, :2], final_corrs[:, 2:], cv2.FM_RANSAC, ransacReprojThreshold=5, confidence=0.999999)
utils.visualize_corrs(img_a, img_b, final_corrs[np.where(mask[:, 0])])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
set_COTR_arguments(parser)
parser.add_argument('--out_dir', type=str, default=general_config['out'], help='out directory')
parser.add_argument('--load_weights', type=str, default=None, help='load a pretrained set of weights, you need to provide the model id')
parser.add_argument('--faster_infer', type=str2bool, default=False, help='use fatser inference')
opt = parser.parse_args()
opt.command = ' '.join(sys.argv)
layer_2_channels = {'layer1': 256,
'layer2': 512,
'layer3': 1024,
'layer4': 2048, }
opt.dim_feedforward = layer_2_channels[opt.layer]
if opt.load_weights:
opt.load_weights_path = os.path.join(opt.out_dir, opt.load_weights, 'checkpoint.pth.tar')
print_opt(opt)
main(opt)
|