File size: 6,504 Bytes
4c88343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import argparse
import sqlite3
from collections import defaultdict
from pathlib import Path

import numpy as np
from tqdm import tqdm

from . import logger
from .utils.read_write_model import (
    CAMERA_MODEL_NAMES,
    Camera,
    Image,
    Point3D,
    write_model,
)


def recover_database_images_and_ids(database_path):
    images = {}
    cameras = {}
    db = sqlite3.connect(str(database_path))
    ret = db.execute("SELECT name, image_id, camera_id FROM images;")
    for name, image_id, camera_id in ret:
        images[name] = image_id
        cameras[name] = camera_id
    db.close()
    logger.info(f"Found {len(images)} images and {len(cameras)} cameras in database.")
    return images, cameras


def quaternion_to_rotation_matrix(qvec):
    qvec = qvec / np.linalg.norm(qvec)
    w, x, y, z = qvec
    R = np.array(
        [
            [1 - 2 * y * y - 2 * z * z, 2 * x * y - 2 * z * w, 2 * x * z + 2 * y * w],
            [2 * x * y + 2 * z * w, 1 - 2 * x * x - 2 * z * z, 2 * y * z - 2 * x * w],
            [2 * x * z - 2 * y * w, 2 * y * z + 2 * x * w, 1 - 2 * x * x - 2 * y * y],
        ]
    )
    return R


def camera_center_to_translation(c, qvec):
    R = quaternion_to_rotation_matrix(qvec)
    return (-1) * np.matmul(R, c)


def read_nvm_model(nvm_path, intrinsics_path, image_ids, camera_ids, skip_points=False):
    with open(intrinsics_path, "r") as f:
        raw_intrinsics = f.readlines()

    logger.info(f"Reading {len(raw_intrinsics)} cameras...")
    cameras = {}
    for intrinsics in raw_intrinsics:
        intrinsics = intrinsics.strip("\n").split(" ")
        name, camera_model, width, height = intrinsics[:4]
        params = [float(p) for p in intrinsics[4:]]
        camera_model = CAMERA_MODEL_NAMES[camera_model]
        assert len(params) == camera_model.num_params
        camera_id = camera_ids[name]
        camera = Camera(
            id=camera_id,
            model=camera_model.model_name,
            width=int(width),
            height=int(height),
            params=params,
        )
        cameras[camera_id] = camera

    nvm_f = open(nvm_path, "r")
    line = nvm_f.readline()
    while line == "\n" or line.startswith("NVM_V3"):
        line = nvm_f.readline()
    num_images = int(line)
    assert num_images == len(cameras)

    logger.info(f"Reading {num_images} images...")
    image_idx_to_db_image_id = []
    image_data = []
    i = 0
    while i < num_images:
        line = nvm_f.readline()
        if line == "\n":
            continue
        data = line.strip("\n").split(" ")
        image_data.append(data)
        image_idx_to_db_image_id.append(image_ids[data[0]])
        i += 1

    line = nvm_f.readline()
    while line == "\n":
        line = nvm_f.readline()
    num_points = int(line)

    if skip_points:
        logger.info(f"Skipping {num_points} points.")
        num_points = 0
    else:
        logger.info(f"Reading {num_points} points...")
    points3D = {}
    image_idx_to_keypoints = defaultdict(list)
    i = 0
    pbar = tqdm(total=num_points, unit="pts")
    while i < num_points:
        line = nvm_f.readline()
        if line == "\n":
            continue

        data = line.strip("\n").split(" ")
        x, y, z, r, g, b, num_observations = data[:7]
        obs_image_ids, point2D_idxs = [], []
        for j in range(int(num_observations)):
            s = 7 + 4 * j
            img_index, kp_index, kx, ky = data[s : s + 4]
            image_idx_to_keypoints[int(img_index)].append(
                (int(kp_index), float(kx), float(ky), i)
            )
            db_image_id = image_idx_to_db_image_id[int(img_index)]
            obs_image_ids.append(db_image_id)
            point2D_idxs.append(kp_index)

        point = Point3D(
            id=i,
            xyz=np.array([x, y, z], float),
            rgb=np.array([r, g, b], int),
            error=1.0,  # fake
            image_ids=np.array(obs_image_ids, int),
            point2D_idxs=np.array(point2D_idxs, int),
        )
        points3D[i] = point

        i += 1
        pbar.update(1)
    pbar.close()

    logger.info("Parsing image data...")
    images = {}
    for i, data in enumerate(image_data):
        # Skip the focal length. Skip the distortion and terminal 0.
        name, _, qw, qx, qy, qz, cx, cy, cz, _, _ = data
        qvec = np.array([qw, qx, qy, qz], float)
        c = np.array([cx, cy, cz], float)
        t = camera_center_to_translation(c, qvec)

        if i in image_idx_to_keypoints:
            # NVM only stores triangulated 2D keypoints: add dummy ones
            keypoints = image_idx_to_keypoints[i]
            point2D_idxs = np.array([d[0] for d in keypoints])
            tri_xys = np.array([[x, y] for _, x, y, _ in keypoints])
            tri_ids = np.array([i for _, _, _, i in keypoints])

            num_2Dpoints = max(point2D_idxs) + 1
            xys = np.zeros((num_2Dpoints, 2), float)
            point3D_ids = np.full(num_2Dpoints, -1, int)
            xys[point2D_idxs] = tri_xys
            point3D_ids[point2D_idxs] = tri_ids
        else:
            xys = np.zeros((0, 2), float)
            point3D_ids = np.full(0, -1, int)

        image_id = image_ids[name]
        image = Image(
            id=image_id,
            qvec=qvec,
            tvec=t,
            camera_id=camera_ids[name],
            name=name,
            xys=xys,
            point3D_ids=point3D_ids,
        )
        images[image_id] = image

    return cameras, images, points3D


def main(nvm, intrinsics, database, output, skip_points=False):
    assert nvm.exists(), nvm
    assert intrinsics.exists(), intrinsics
    assert database.exists(), database

    image_ids, camera_ids = recover_database_images_and_ids(database)

    logger.info("Reading the NVM model...")
    model = read_nvm_model(
        nvm, intrinsics, image_ids, camera_ids, skip_points=skip_points
    )

    logger.info("Writing the COLMAP model...")
    output.mkdir(exist_ok=True, parents=True)
    write_model(*model, path=str(output), ext=".bin")
    logger.info("Done.")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--nvm", required=True, type=Path)
    parser.add_argument("--intrinsics", required=True, type=Path)
    parser.add_argument("--database", required=True, type=Path)
    parser.add_argument("--output", required=True, type=Path)
    parser.add_argument("--skip_points", action="store_true")
    args = parser.parse_args()
    main(**args.__dict__)