Spaces:
Running
Running
File size: 18,775 Bytes
2673dcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
from pathlib import Path
from types import SimpleNamespace
import warnings
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from typing import Optional, List, Callable
try:
from flash_attn.modules.mha import FlashCrossAttention
except ModuleNotFoundError:
FlashCrossAttention = None
if FlashCrossAttention or hasattr(F, 'scaled_dot_product_attention'):
FLASH_AVAILABLE = True
else:
FLASH_AVAILABLE = False
torch.backends.cudnn.deterministic = True
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
def normalize_keypoints(
kpts: torch.Tensor,
size: torch.Tensor) -> torch.Tensor:
if isinstance(size, torch.Size):
size = torch.tensor(size)[None]
shift = size.float().to(kpts) / 2
scale = size.max(1).values.float().to(kpts) / 2
kpts = (kpts - shift[:, None]) / scale[:, None, None]
return kpts
def rotate_half(x: torch.Tensor) -> torch.Tensor:
x = x.unflatten(-1, (-1, 2))
x1, x2 = x.unbind(dim=-1)
return torch.stack((-x2, x1), dim=-1).flatten(start_dim=-2)
def apply_cached_rotary_emb(
freqs: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
return (t * freqs[0]) + (rotate_half(t) * freqs[1])
class LearnableFourierPositionalEncoding(nn.Module):
def __init__(self, M: int, dim: int, F_dim: int = None,
gamma: float = 1.0) -> None:
super().__init__()
F_dim = F_dim if F_dim is not None else dim
self.gamma = gamma
self.Wr = nn.Linear(M, F_dim // 2, bias=False)
nn.init.normal_(self.Wr.weight.data, mean=0, std=self.gamma ** -2)
def forward(self, x: torch.Tensor) -> torch.Tensor:
""" encode position vector """
projected = self.Wr(x)
cosines, sines = torch.cos(projected), torch.sin(projected)
emb = torch.stack([cosines, sines], 0).unsqueeze(-3)
return emb.repeat_interleave(2, dim=-1)
class TokenConfidence(nn.Module):
def __init__(self, dim: int) -> None:
super().__init__()
self.token = nn.Sequential(
nn.Linear(dim, 1),
nn.Sigmoid()
)
def forward(self, desc0: torch.Tensor, desc1: torch.Tensor):
""" get confidence tokens """
return (
self.token(desc0.detach().float()).squeeze(-1),
self.token(desc1.detach().float()).squeeze(-1))
class Attention(nn.Module):
def __init__(self, allow_flash: bool) -> None:
super().__init__()
if allow_flash and not FLASH_AVAILABLE:
warnings.warn(
'FlashAttention is not available. For optimal speed, '
'consider installing torch >= 2.0 or flash-attn.',
stacklevel=2,
)
self.enable_flash = allow_flash and FLASH_AVAILABLE
if allow_flash and FlashCrossAttention:
self.flash_ = FlashCrossAttention()
def forward(self, q, k, v) -> torch.Tensor:
if self.enable_flash and q.device.type == 'cuda':
if FlashCrossAttention:
q, k, v = [x.transpose(-2, -3) for x in [q, k, v]]
m = self.flash_(q.half(), torch.stack([k, v], 2).half())
return m.transpose(-2, -3).to(q.dtype)
else: # use torch 2.0 scaled_dot_product_attention with flash
args = [x.half().contiguous() for x in [q, k, v]]
with torch.backends.cuda.sdp_kernel(enable_flash=True):
return F.scaled_dot_product_attention(*args).to(q.dtype)
elif hasattr(F, 'scaled_dot_product_attention'):
args = [x.contiguous() for x in [q, k, v]]
return F.scaled_dot_product_attention(*args).to(q.dtype)
else:
s = q.shape[-1] ** -0.5
attn = F.softmax(torch.einsum('...id,...jd->...ij', q, k) * s, -1)
return torch.einsum('...ij,...jd->...id', attn, v)
class Transformer(nn.Module):
def __init__(self, embed_dim: int, num_heads: int,
flash: bool = False, bias: bool = True) -> None:
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
assert self.embed_dim % num_heads == 0
self.head_dim = self.embed_dim // num_heads
self.Wqkv = nn.Linear(embed_dim, 3*embed_dim, bias=bias)
self.inner_attn = Attention(flash)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.ffn = nn.Sequential(
nn.Linear(2*embed_dim, 2*embed_dim),
nn.LayerNorm(2*embed_dim, elementwise_affine=True),
nn.GELU(),
nn.Linear(2*embed_dim, embed_dim)
)
def _forward(self, x: torch.Tensor,
encoding: Optional[torch.Tensor] = None):
qkv = self.Wqkv(x)
qkv = qkv.unflatten(-1, (self.num_heads, -1, 3)).transpose(1, 2)
q, k, v = qkv[..., 0], qkv[..., 1], qkv[..., 2]
if encoding is not None:
q = apply_cached_rotary_emb(encoding, q)
k = apply_cached_rotary_emb(encoding, k)
context = self.inner_attn(q, k, v)
message = self.out_proj(
context.transpose(1, 2).flatten(start_dim=-2))
return x + self.ffn(torch.cat([x, message], -1))
def forward(self, x0, x1, encoding0=None, encoding1=None):
return self._forward(x0, encoding0), self._forward(x1, encoding1)
class CrossTransformer(nn.Module):
def __init__(self, embed_dim: int, num_heads: int,
flash: bool = False, bias: bool = True) -> None:
super().__init__()
self.heads = num_heads
dim_head = embed_dim // num_heads
self.scale = dim_head ** -0.5
inner_dim = dim_head * num_heads
self.to_qk = nn.Linear(embed_dim, inner_dim, bias=bias)
self.to_v = nn.Linear(embed_dim, inner_dim, bias=bias)
self.to_out = nn.Linear(inner_dim, embed_dim, bias=bias)
self.ffn = nn.Sequential(
nn.Linear(2*embed_dim, 2*embed_dim),
nn.LayerNorm(2*embed_dim, elementwise_affine=True),
nn.GELU(),
nn.Linear(2*embed_dim, embed_dim)
)
if flash and FLASH_AVAILABLE:
self.flash = Attention(True)
else:
self.flash = None
def map_(self, func: Callable, x0: torch.Tensor, x1: torch.Tensor):
return func(x0), func(x1)
def forward(self, x0: torch.Tensor, x1: torch.Tensor) -> List[torch.Tensor]:
qk0, qk1 = self.map_(self.to_qk, x0, x1)
v0, v1 = self.map_(self.to_v, x0, x1)
qk0, qk1, v0, v1 = map(
lambda t: t.unflatten(-1, (self.heads, -1)).transpose(1, 2),
(qk0, qk1, v0, v1))
if self.flash is not None:
m0 = self.flash(qk0, qk1, v1)
m1 = self.flash(qk1, qk0, v0)
else:
qk0, qk1 = qk0 * self.scale**0.5, qk1 * self.scale**0.5
sim = torch.einsum('b h i d, b h j d -> b h i j', qk0, qk1)
attn01 = F.softmax(sim, dim=-1)
attn10 = F.softmax(sim.transpose(-2, -1).contiguous(), dim=-1)
m0 = torch.einsum('bhij, bhjd -> bhid', attn01, v1)
m1 = torch.einsum('bhji, bhjd -> bhid', attn10.transpose(-2, -1), v0)
m0, m1 = self.map_(lambda t: t.transpose(1, 2).flatten(start_dim=-2),
m0, m1)
m0, m1 = self.map_(self.to_out, m0, m1)
x0 = x0 + self.ffn(torch.cat([x0, m0], -1))
x1 = x1 + self.ffn(torch.cat([x1, m1], -1))
return x0, x1
def sigmoid_log_double_softmax(
sim: torch.Tensor, z0: torch.Tensor, z1: torch.Tensor) -> torch.Tensor:
""" create the log assignment matrix from logits and similarity"""
b, m, n = sim.shape
certainties = F.logsigmoid(z0) + F.logsigmoid(z1).transpose(1, 2)
scores0 = F.log_softmax(sim, 2)
scores1 = F.log_softmax(
sim.transpose(-1, -2).contiguous(), 2).transpose(-1, -2)
scores = sim.new_full((b, m+1, n+1), 0)
scores[:, :m, :n] = (scores0 + scores1 + certainties)
scores[:, :-1, -1] = F.logsigmoid(-z0.squeeze(-1))
scores[:, -1, :-1] = F.logsigmoid(-z1.squeeze(-1))
return scores
class MatchAssignment(nn.Module):
def __init__(self, dim: int) -> None:
super().__init__()
self.dim = dim
self.matchability = nn.Linear(dim, 1, bias=True)
self.final_proj = nn.Linear(dim, dim, bias=True)
def forward(self, desc0: torch.Tensor, desc1: torch.Tensor):
""" build assignment matrix from descriptors """
mdesc0, mdesc1 = self.final_proj(desc0), self.final_proj(desc1)
_, _, d = mdesc0.shape
mdesc0, mdesc1 = mdesc0 / d**.25, mdesc1 / d**.25
sim = torch.einsum('bmd,bnd->bmn', mdesc0, mdesc1)
z0 = self.matchability(desc0)
z1 = self.matchability(desc1)
scores = sigmoid_log_double_softmax(sim, z0, z1)
return scores, sim
def scores(self, desc0: torch.Tensor, desc1: torch.Tensor):
m0 = torch.sigmoid(self.matchability(desc0)).squeeze(-1)
m1 = torch.sigmoid(self.matchability(desc1)).squeeze(-1)
return m0, m1
def filter_matches(scores: torch.Tensor, th: float):
""" obtain matches from a log assignment matrix [Bx M+1 x N+1]"""
max0, max1 = scores[:, :-1, :-1].max(2), scores[:, :-1, :-1].max(1)
m0, m1 = max0.indices, max1.indices
mutual0 = torch.arange(m0.shape[1]).to(m0)[None] == m1.gather(1, m0)
mutual1 = torch.arange(m1.shape[1]).to(m1)[None] == m0.gather(1, m1)
max0_exp = max0.values.exp()
zero = max0_exp.new_tensor(0)
mscores0 = torch.where(mutual0, max0_exp, zero)
mscores1 = torch.where(mutual1, mscores0.gather(1, m1), zero)
if th is not None:
valid0 = mutual0 & (mscores0 > th)
else:
valid0 = mutual0
valid1 = mutual1 & valid0.gather(1, m1)
m0 = torch.where(valid0, m0, m0.new_tensor(-1))
m1 = torch.where(valid1, m1, m1.new_tensor(-1))
return m0, m1, mscores0, mscores1
class LightGlue(nn.Module):
default_conf = {
'name': 'lightglue', # just for interfacing
'input_dim': 256, # input descriptor dimension (autoselected from weights)
'descriptor_dim': 256,
'n_layers': 9,
'num_heads': 4,
'flash': True, # enable FlashAttention if available.
'mp': False, # enable mixed precision
'depth_confidence': 0.95, # early stopping, disable with -1
'width_confidence': 0.99, # point pruning, disable with -1
'filter_threshold': 0.1, # match threshold
'weights': None,
}
required_data_keys = [
'image0', 'image1']
version = "v0.1_arxiv"
url = "https://github.com/cvg/LightGlue/releases/download/{}/{}_lightglue.pth"
features = {
'superpoint': ('superpoint_lightglue', 256),
'disk': ('disk_lightglue', 128)
}
def __init__(self, features='superpoint', **conf) -> None:
super().__init__()
self.conf = {**self.default_conf, **conf}
if features is not None:
assert (features in list(self.features.keys()))
self.conf['weights'], self.conf['input_dim'] = \
self.features[features]
self.conf = conf = SimpleNamespace(**self.conf)
if conf.input_dim != conf.descriptor_dim:
self.input_proj = nn.Linear(
conf.input_dim, conf.descriptor_dim, bias=True)
else:
self.input_proj = nn.Identity()
head_dim = conf.descriptor_dim // conf.num_heads
self.posenc = LearnableFourierPositionalEncoding(2, head_dim, head_dim)
h, n, d = conf.num_heads, conf.n_layers, conf.descriptor_dim
self.self_attn = nn.ModuleList(
[Transformer(d, h, conf.flash) for _ in range(n)])
self.cross_attn = nn.ModuleList(
[CrossTransformer(d, h, conf.flash) for _ in range(n)])
self.log_assignment = nn.ModuleList(
[MatchAssignment(d) for _ in range(n)])
self.token_confidence = nn.ModuleList([
TokenConfidence(d) for _ in range(n-1)])
if features is not None:
fname = f'{conf.weights}_{self.version}.pth'.replace('.', '-')
state_dict = torch.hub.load_state_dict_from_url(
self.url.format(self.version, features), file_name=fname)
self.load_state_dict(state_dict, strict=False)
elif conf.weights is not None:
path = Path(__file__).parent
path = path / 'weights/{}.pth'.format(self.conf.weights)
state_dict = torch.load(str(path), map_location='cpu')
self.load_state_dict(state_dict, strict=False)
print('Loaded LightGlue model')
def forward(self, data: dict) -> dict:
"""
Match keypoints and descriptors between two images
Input (dict):
image0: dict
keypoints: [B x M x 2]
descriptors: [B x M x D]
image: [B x C x H x W] or image_size: [B x 2]
image1: dict
keypoints: [B x N x 2]
descriptors: [B x N x D]
image: [B x C x H x W] or image_size: [B x 2]
Output (dict):
log_assignment: [B x M+1 x N+1]
matches0: [B x M]
matching_scores0: [B x M]
matches1: [B x N]
matching_scores1: [B x N]
matches: List[[Si x 2]], scores: List[[Si]]
"""
with torch.autocast(enabled=self.conf.mp, device_type='cuda'):
return self._forward(data)
def _forward(self, data: dict) -> dict:
for key in self.required_data_keys:
assert key in data, f'Missing key {key} in data'
data0, data1 = data['image0'], data['image1']
kpts0_, kpts1_ = data0['keypoints'], data1['keypoints']
b, m, _ = kpts0_.shape
b, n, _ = kpts1_.shape
size0, size1 = data0.get('image_size'), data1.get('image_size')
size0 = size0 if size0 is not None else data0['image'].shape[-2:][::-1]
size1 = size1 if size1 is not None else data1['image'].shape[-2:][::-1]
kpts0 = normalize_keypoints(kpts0_, size=size0)
kpts1 = normalize_keypoints(kpts1_, size=size1)
assert torch.all(kpts0 >= -1) and torch.all(kpts0 <= 1)
assert torch.all(kpts1 >= -1) and torch.all(kpts1 <= 1)
desc0 = data0['descriptors'].detach()
desc1 = data1['descriptors'].detach()
assert desc0.shape[-1] == self.conf.input_dim
assert desc1.shape[-1] == self.conf.input_dim
if torch.is_autocast_enabled():
desc0 = desc0.half()
desc1 = desc1.half()
desc0 = self.input_proj(desc0)
desc1 = self.input_proj(desc1)
# cache positional embeddings
encoding0 = self.posenc(kpts0)
encoding1 = self.posenc(kpts1)
# GNN + final_proj + assignment
ind0 = torch.arange(0, m).to(device=kpts0.device)[None]
ind1 = torch.arange(0, n).to(device=kpts0.device)[None]
prune0 = torch.ones_like(ind0) # store layer where pruning is detected
prune1 = torch.ones_like(ind1)
dec, wic = self.conf.depth_confidence, self.conf.width_confidence
token0, token1 = None, None
for i in range(self.conf.n_layers):
# self+cross attention
desc0, desc1 = self.self_attn[i](
desc0, desc1, encoding0, encoding1)
desc0, desc1 = self.cross_attn[i](desc0, desc1)
if i == self.conf.n_layers - 1:
continue # no early stopping or adaptive width at last layer
if dec > 0: # early stopping
token0, token1 = self.token_confidence[i](desc0, desc1)
if self.stop(token0, token1, self.conf_th(i), dec, m+n):
break
if wic > 0: # point pruning
match0, match1 = self.log_assignment[i].scores(desc0, desc1)
mask0 = self.get_mask(token0, match0, self.conf_th(i), 1-wic)
mask1 = self.get_mask(token1, match1, self.conf_th(i), 1-wic)
ind0, ind1 = ind0[mask0][None], ind1[mask1][None]
desc0, desc1 = desc0[mask0][None], desc1[mask1][None]
if desc0.shape[-2] == 0 or desc1.shape[-2] == 0:
break
encoding0 = encoding0[:, :, mask0][:, None]
encoding1 = encoding1[:, :, mask1][:, None]
prune0[:, ind0] += 1
prune1[:, ind1] += 1
if wic > 0: # scatter with indices after pruning
scores_, _ = self.log_assignment[i](desc0, desc1)
dt, dev = scores_.dtype, scores_.device
scores = torch.zeros(b, m+1, n+1, dtype=dt, device=dev)
scores[:, :-1, :-1] = -torch.inf
scores[:, ind0[0], -1] = scores_[:, :-1, -1]
scores[:, -1, ind1[0]] = scores_[:, -1, :-1]
x, y = torch.meshgrid(ind0[0], ind1[0], indexing='ij')
scores[:, x, y] = scores_[:, :-1, :-1]
else:
scores, _ = self.log_assignment[i](desc0, desc1)
m0, m1, mscores0, mscores1 = filter_matches(
scores, self.conf.filter_threshold)
matches, mscores = [], []
for k in range(b):
valid = m0[k] > -1
matches.append(torch.stack([torch.where(valid)[0], m0[k][valid]], -1))
mscores.append(mscores0[k][valid])
return {
'log_assignment': scores,
'matches0': m0,
'matches1': m1,
'matching_scores0': mscores0,
'matching_scores1': mscores1,
'stop': i+1,
'prune0': prune0,
'prune1': prune1,
'matches': matches,
'scores': mscores,
}
def conf_th(self, i: int) -> float:
""" scaled confidence threshold """
return np.clip(
0.8 + 0.1 * np.exp(-4.0 * i / self.conf.n_layers), 0, 1)
def get_mask(self, confidence: torch.Tensor, match: torch.Tensor,
conf_th: float, match_th: float) -> torch.Tensor:
""" mask points which should be removed """
if conf_th and confidence is not None:
mask = torch.where(confidence > conf_th, match,
match.new_tensor(1.0)) > match_th
else:
mask = match > match_th
return mask
def stop(self, token0: torch.Tensor, token1: torch.Tensor,
conf_th: float, inl_th: float, seql: int) -> torch.Tensor:
""" evaluate stopping condition"""
tokens = torch.cat([token0, token1], -1)
if conf_th:
pos = 1.0 - (tokens < conf_th).float().sum() / seql
return pos > inl_th
else:
return tokens.mean() > inl_th
|