Spaces:
Running
Running
File size: 12,036 Bytes
4d4dd90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import math
from typing import Tuple
import numpy as np
import torch
from .utils import from_homogeneous, to_homogeneous
def flat2mat(H):
return np.reshape(np.concatenate([H, np.ones_like(H[:, :1])], axis=1), [3, 3])
# Homography creation
def create_center_patch(shape, patch_shape=None):
if patch_shape is None:
patch_shape = shape
width, height = shape
pwidth, pheight = patch_shape
left = int((width - pwidth) / 2)
bottom = int((height - pheight) / 2)
right = int((width + pwidth) / 2)
top = int((height + pheight) / 2)
return np.array([[left, bottom], [left, top], [right, top], [right, bottom]])
def check_convex(patch, min_convexity=0.05):
"""Checks if given polygon vertices [N,2] form a convex shape"""
for i in range(patch.shape[0]):
x1, y1 = patch[(i - 1) % patch.shape[0]]
x2, y2 = patch[i]
x3, y3 = patch[(i + 1) % patch.shape[0]]
if (x2 - x1) * (y3 - y2) - (x3 - x2) * (y2 - y1) > -min_convexity:
return False
return True
def sample_homography_corners(
shape,
patch_shape,
difficulty=1.0,
translation=0.4,
n_angles=10,
max_angle=90,
min_convexity=0.05,
rng=np.random,
):
max_angle = max_angle / 180.0 * math.pi
width, height = shape
pwidth, pheight = width * (1 - difficulty), height * (1 - difficulty)
min_pts1 = create_center_patch(shape, (pwidth, pheight))
full = create_center_patch(shape)
pts2 = create_center_patch(patch_shape)
scale = min_pts1 - full
found_valid = False
cnt = -1
while not found_valid:
offsets = rng.uniform(0.0, 1.0, size=(4, 2)) * scale
pts1 = full + offsets
found_valid = check_convex(pts1 / np.array(shape), min_convexity)
cnt += 1
# re-center
pts1 = pts1 - np.mean(pts1, axis=0, keepdims=True)
pts1 = pts1 + np.mean(min_pts1, axis=0, keepdims=True)
# Rotation
if n_angles > 0 and difficulty > 0:
angles = np.linspace(-max_angle * difficulty, max_angle * difficulty, n_angles)
rng.shuffle(angles)
rng.shuffle(angles)
angles = np.concatenate([[0.0], angles], axis=0)
center = np.mean(pts1, axis=0, keepdims=True)
rot_mat = np.reshape(
np.stack(
[np.cos(angles), -np.sin(angles), np.sin(angles), np.cos(angles)],
axis=1,
),
[-1, 2, 2],
)
rotated = (
np.matmul(
np.tile(np.expand_dims(pts1 - center, axis=0), [n_angles + 1, 1, 1]),
rot_mat,
)
+ center
)
for idx in range(1, n_angles):
warped_points = rotated[idx] / np.array(shape)
if np.all((warped_points >= 0.0) & (warped_points < 1.0)):
pts1 = rotated[idx]
break
# Translation
if translation > 0:
min_trans = -np.min(pts1, axis=0)
max_trans = shape - np.max(pts1, axis=0)
trans = rng.uniform(min_trans, max_trans)[None]
pts1 += trans * translation * difficulty
H = compute_homography(pts1, pts2, [1.0, 1.0])
warped = warp_points(full, H, inverse=False)
return H, full, warped, patch_shape
def compute_homography(pts1_, pts2_, shape):
"""Compute the homography matrix from 4 point correspondences"""
# Rescale to actual size
shape = np.array(shape[::-1], dtype=np.float32) # different convention [y, x]
pts1 = pts1_ * np.expand_dims(shape, axis=0)
pts2 = pts2_ * np.expand_dims(shape, axis=0)
def ax(p, q):
return [p[0], p[1], 1, 0, 0, 0, -p[0] * q[0], -p[1] * q[0]]
def ay(p, q):
return [0, 0, 0, p[0], p[1], 1, -p[0] * q[1], -p[1] * q[1]]
a_mat = np.stack([f(pts1[i], pts2[i]) for i in range(4) for f in (ax, ay)], axis=0)
p_mat = np.transpose(
np.stack([[pts2[i][j] for i in range(4) for j in range(2)]], axis=0)
)
homography = np.transpose(np.linalg.solve(a_mat, p_mat))
return flat2mat(homography)
# Point warping utils
def warp_points(points, homography, inverse=True):
"""
Warp a list of points with the INVERSE of the given homography.
The inverse is used to be coherent with tf.contrib.image.transform
Arguments:
points: list of N points, shape (N, 2).
homography: batched or not (shapes (B, 3, 3) and (3, 3) respectively).
Returns: a Tensor of shape (N, 2) or (B, N, 2) (depending on whether the homography
is batched) containing the new coordinates of the warped points.
"""
H = homography[None] if len(homography.shape) == 2 else homography
# Get the points to the homogeneous format
num_points = points.shape[0]
# points = points.astype(np.float32)[:, ::-1]
points = np.concatenate([points, np.ones([num_points, 1], dtype=np.float32)], -1)
H_inv = np.transpose(np.linalg.inv(H) if inverse else H)
warped_points = np.tensordot(points, H_inv, axes=[[1], [0]])
warped_points = np.transpose(warped_points, [2, 0, 1])
warped_points[np.abs(warped_points[:, :, 2]) < 1e-8, 2] = 1e-8
warped_points = warped_points[:, :, :2] / warped_points[:, :, 2:]
return warped_points[0] if len(homography.shape) == 2 else warped_points
def warp_points_torch(points, H, inverse=True):
"""
Warp a list of points with the INVERSE of the given homography.
The inverse is used to be coherent with tf.contrib.image.transform
Arguments:
points: batched list of N points, shape (B, N, 2).
H: batched or not (shapes (B, 3, 3) and (3, 3) respectively).
inverse: Whether to multiply the points by H or the inverse of H
Returns: a Tensor of shape (B, N, 2) containing the new coordinates of the warps.
"""
# Get the points to the homogeneous format
points = to_homogeneous(points)
# Apply the homography
H_mat = (torch.inverse(H) if inverse else H).transpose(-2, -1)
warped_points = torch.einsum("...nj,...ji->...ni", points, H_mat)
warped_points = from_homogeneous(warped_points, eps=1e-5)
return warped_points
# Line warping utils
def seg_equation(segs):
# calculate list of start, end and midpoints points from both lists
start_points, end_points = to_homogeneous(segs[..., 0, :]), to_homogeneous(
segs[..., 1, :]
)
# Compute the line equations as ax + by + c = 0 , where x^2 + y^2 = 1
lines = torch.cross(start_points, end_points, dim=-1)
lines_norm = torch.sqrt(lines[..., 0] ** 2 + lines[..., 1] ** 2)[..., None]
assert torch.all(
lines_norm > 0
), "Error: trying to compute the equation of a line with a single point"
lines = lines / lines_norm
return lines
def is_inside_img(pts: torch.Tensor, img_shape: Tuple[int, int]):
h, w = img_shape
return (
(pts >= 0).all(dim=-1)
& (pts[..., 0] < w)
& (pts[..., 1] < h)
& (~torch.isinf(pts).any(dim=-1))
)
def shrink_segs_to_img(segs: torch.Tensor, img_shape: Tuple[int, int]) -> torch.Tensor:
"""
Shrink an array of segments to fit inside the image.
:param segs: The tensor of segments with shape (N, 2, 2)
:param img_shape: The image shape in format (H, W)
"""
EPS = 1e-4
device = segs.device
w, h = img_shape[1], img_shape[0]
# Project the segments to the reference image
segs = segs.clone()
eqs = seg_equation(segs)
x0, y0 = torch.tensor([1.0, 0, 0.0], device=device), torch.tensor(
[0.0, 1, 0], device=device
)
x0 = x0.repeat(eqs.shape[:-1] + (1,))
y0 = y0.repeat(eqs.shape[:-1] + (1,))
pt_x0s = torch.cross(eqs, x0, dim=-1)
pt_x0s = pt_x0s[..., :-1] / pt_x0s[..., None, -1]
pt_x0s_valid = is_inside_img(pt_x0s, img_shape)
pt_y0s = torch.cross(eqs, y0, dim=-1)
pt_y0s = pt_y0s[..., :-1] / pt_y0s[..., None, -1]
pt_y0s_valid = is_inside_img(pt_y0s, img_shape)
xW = torch.tensor([1.0, 0, EPS - w], device=device)
yH = torch.tensor([0.0, 1, EPS - h], device=device)
xW = xW.repeat(eqs.shape[:-1] + (1,))
yH = yH.repeat(eqs.shape[:-1] + (1,))
pt_xWs = torch.cross(eqs, xW, dim=-1)
pt_xWs = pt_xWs[..., :-1] / pt_xWs[..., None, -1]
pt_xWs_valid = is_inside_img(pt_xWs, img_shape)
pt_yHs = torch.cross(eqs, yH, dim=-1)
pt_yHs = pt_yHs[..., :-1] / pt_yHs[..., None, -1]
pt_yHs_valid = is_inside_img(pt_yHs, img_shape)
# If the X coordinate of the first endpoint is out
mask = (segs[..., 0, 0] < 0) & pt_x0s_valid
segs[mask, 0, :] = pt_x0s[mask]
mask = (segs[..., 0, 0] > (w - 1)) & pt_xWs_valid
segs[mask, 0, :] = pt_xWs[mask]
# If the X coordinate of the second endpoint is out
mask = (segs[..., 1, 0] < 0) & pt_x0s_valid
segs[mask, 1, :] = pt_x0s[mask]
mask = (segs[:, 1, 0] > (w - 1)) & pt_xWs_valid
segs[mask, 1, :] = pt_xWs[mask]
# If the Y coordinate of the first endpoint is out
mask = (segs[..., 0, 1] < 0) & pt_y0s_valid
segs[mask, 0, :] = pt_y0s[mask]
mask = (segs[..., 0, 1] > (h - 1)) & pt_yHs_valid
segs[mask, 0, :] = pt_yHs[mask]
# If the Y coordinate of the second endpoint is out
mask = (segs[..., 1, 1] < 0) & pt_y0s_valid
segs[mask, 1, :] = pt_y0s[mask]
mask = (segs[..., 1, 1] > (h - 1)) & pt_yHs_valid
segs[mask, 1, :] = pt_yHs[mask]
assert (
torch.all(segs >= 0)
and torch.all(segs[..., 0] < w)
and torch.all(segs[..., 1] < h)
)
return segs
def warp_lines_torch(
lines, H, inverse=True, dst_shape: Tuple[int, int] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
:param lines: A tensor of shape (B, N, 2, 2)
where B is the batch size, N the number of lines.
:param H: The homography used to convert the lines.
batched or not (shapes (B, 3, 3) and (3, 3) respectively).
:param inverse: Whether to apply H or the inverse of H
:param dst_shape:If provided, lines are trimmed to be inside the image
"""
device = lines.device
batch_size = len(lines)
lines = warp_points_torch(lines.reshape(batch_size, -1, 2), H, inverse).reshape(
lines.shape
)
if dst_shape is None:
return lines, torch.ones(lines.shape[:-2], dtype=torch.bool, device=device)
out_img = torch.any(
(lines < 0) | (lines >= torch.tensor(dst_shape[::-1], device=device)), -1
)
valid = ~out_img.all(-1)
any_out_of_img = out_img.any(-1)
lines_to_trim = valid & any_out_of_img
for b in range(batch_size):
lines_to_trim_mask_b = lines_to_trim[b]
lines_to_trim_b = lines[b][lines_to_trim_mask_b]
corrected_lines = shrink_segs_to_img(lines_to_trim_b, dst_shape)
lines[b][lines_to_trim_mask_b] = corrected_lines
return lines, valid
# Homography evaluation utils
def sym_homography_error(kpts0, kpts1, T_0to1):
kpts0_1 = from_homogeneous(to_homogeneous(kpts0) @ T_0to1.transpose(-1, -2))
dist0_1 = ((kpts0_1 - kpts1) ** 2).sum(-1).sqrt()
kpts1_0 = from_homogeneous(
to_homogeneous(kpts1) @ torch.pinverse(T_0to1.transpose(-1, -2))
)
dist1_0 = ((kpts1_0 - kpts0) ** 2).sum(-1).sqrt()
return (dist0_1 + dist1_0) / 2.0
def sym_homography_error_all(kpts0, kpts1, H):
kp0_1 = warp_points_torch(kpts0, H, inverse=False)
kp1_0 = warp_points_torch(kpts1, H, inverse=True)
# build a distance matrix of size [... x M x N]
dist0 = torch.sum((kp0_1.unsqueeze(-2) - kpts1.unsqueeze(-3)) ** 2, -1).sqrt()
dist1 = torch.sum((kpts0.unsqueeze(-2) - kp1_0.unsqueeze(-3)) ** 2, -1).sqrt()
return (dist0 + dist1) / 2.0
def homography_corner_error(T, T_gt, image_size):
W, H = image_size[..., 0], image_size[..., 1]
corners0 = torch.Tensor([[0, 0], [W, 0], [W, H], [0, H]]).float().to(T)
corners1_gt = from_homogeneous(to_homogeneous(corners0) @ T_gt.transpose(-1, -2))
corners1 = from_homogeneous(to_homogeneous(corners0) @ T.transpose(-1, -2))
d = torch.sqrt(((corners1 - corners1_gt) ** 2).sum(-1))
return d.mean(-1)
|