File size: 9,978 Bytes
4d4dd90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
"""
ETH3D multi-view benchmark, used for line matching evaluation.
"""
import logging
import os
import shutil
import zipfile
from pathlib import Path

import cv2
import numpy as np
import torch

from ..geometry.wrappers import Camera, Pose
from ..settings import DATA_PATH
from ..utils.image import ImagePreprocessor, load_image
from .base_dataset import BaseDataset
from .utils import scale_intrinsics

logger = logging.getLogger(__name__)


def read_cameras(camera_file, scale_factor=None):
    """Read the camera intrinsics from a file in COLMAP format."""
    with open(camera_file, "r") as f:
        raw_cameras = f.read().rstrip().split("\n")
    raw_cameras = raw_cameras[3:]
    cameras = []
    for c in raw_cameras:
        data = c.split(" ")
        fx, fy, cx, cy = np.array(list(map(float, data[4:])))
        K = np.array([[fx, 0.0, cx], [0.0, fy, cy], [0.0, 0.0, 1.0]], dtype=np.float32)
        if scale_factor is not None:
            K = scale_intrinsics(K, np.array([scale_factor, scale_factor]))
        cameras.append(Camera.from_calibration_matrix(K).float())
    return cameras


def qvec2rotmat(qvec):
    """Convert from quaternions to rotation matrix."""
    return np.array(
        [
            [
                1 - 2 * qvec[2] ** 2 - 2 * qvec[3] ** 2,
                2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
                2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2],
            ],
            [
                2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
                1 - 2 * qvec[1] ** 2 - 2 * qvec[3] ** 2,
                2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1],
            ],
            [
                2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
                2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
                1 - 2 * qvec[1] ** 2 - 2 * qvec[2] ** 2,
            ],
        ]
    )


class ETH3DDataset(BaseDataset):
    default_conf = {
        "data_dir": "ETH3D_undistorted",
        "grayscale": True,
        "downsize_factor": 8,
        "min_covisibility": 500,
        "batch_size": 1,
        "two_view": True,
        "min_overlap": 0.5,
        "max_overlap": 1.0,
        "sort_by_overlap": False,
        "seed": 0,
    }

    def _init(self, conf):
        self.grayscale = conf.grayscale
        self.downsize_factor = conf.downsize_factor

        # Set random seeds
        np.random.seed(conf.seed)
        torch.manual_seed(conf.seed)

        # Auto-download the dataset
        if not (DATA_PATH / conf.data_dir).exists():
            logger.info("Downloading the ETH3D dataset...")
            self.download_eth3d()

        # Form pairs of images from the multiview dataset
        self.img_dir = DATA_PATH / conf.data_dir
        self.data = []
        for folder in self.img_dir.iterdir():
            img_folder = Path(folder, "images", "dslr_images_undistorted")
            depth_folder = Path(folder, "ground_truth_depth/undistorted_depth")
            depth_ext = ".png"
            names = [img.name for img in img_folder.iterdir()]
            names.sort()

            # Read intrinsics and extrinsics data
            cameras = read_cameras(
                str(Path(folder, "dslr_calibration_undistorted", "cameras.txt")),
                1 / self.downsize_factor,
            )
            name_to_cam_idx = {name: {} for name in names}
            with open(
                str(Path(folder, "dslr_calibration_jpg", "images.txt")), "r"
            ) as f:
                raw_data = f.read().rstrip().split("\n")[4::2]
            for raw_line in raw_data:
                line = raw_line.split(" ")
                img_name = os.path.basename(line[-1])
                name_to_cam_idx[img_name]["dist_camera_idx"] = int(line[-2])
            T_world_to_camera = {}
            image_visible_points3D = {}
            with open(
                str(Path(folder, "dslr_calibration_undistorted", "images.txt")), "r"
            ) as f:
                lines = f.readlines()[4:]  # Skip the header
                raw_poses = [line.strip("\n").split(" ") for line in lines[::2]]
                raw_points = [line.strip("\n").split(" ") for line in lines[1::2]]
            for raw_pose, raw_pts in zip(raw_poses, raw_points):
                img_name = os.path.basename(raw_pose[-1])
                # Extract the transform from world to camera
                target_extrinsics = list(map(float, raw_pose[1:8]))
                pose = np.eye(4, dtype=np.float32)
                pose[:3, :3] = qvec2rotmat(target_extrinsics[:4])
                pose[:3, 3] = target_extrinsics[4:]
                T_world_to_camera[img_name] = pose
                name_to_cam_idx[img_name]["undist_camera_idx"] = int(raw_pose[-2])
                # Extract the visible 3D points
                point3D_ids = [id for id in map(int, raw_pts[2::3]) if id != -1]
                image_visible_points3D[img_name] = set(point3D_ids)

            # Extract the covisibility of each image
            num_imgs = len(names)
            n_covisible_points = np.zeros((num_imgs, num_imgs))
            for i in range(num_imgs - 1):
                for j in range(i + 1, num_imgs):
                    visible_points3D1 = image_visible_points3D[names[i]]
                    visible_points3D2 = image_visible_points3D[names[j]]
                    n_covisible_points[i, j] = len(
                        visible_points3D1 & visible_points3D2
                    )

            # Keep only the pairs with enough covisibility
            valid_pairs = np.where(n_covisible_points >= conf.min_covisibility)
            valid_pairs = np.stack(valid_pairs, axis=1)

            self.data += [
                {
                    "view0": {
                        "name": names[i][:-4],
                        "img_path": str(Path(img_folder, names[i])),
                        "depth_path": str(Path(depth_folder, names[i][:-4]))
                        + depth_ext,
                        "camera": cameras[name_to_cam_idx[names[i]]["dist_camera_idx"]],
                        "T_w2cam": Pose.from_4x4mat(T_world_to_camera[names[i]]),
                    },
                    "view1": {
                        "name": names[j][:-4],
                        "img_path": str(Path(img_folder, names[j])),
                        "depth_path": str(Path(depth_folder, names[j][:-4]))
                        + depth_ext,
                        "camera": cameras[name_to_cam_idx[names[j]]["dist_camera_idx"]],
                        "T_w2cam": Pose.from_4x4mat(T_world_to_camera[names[j]]),
                    },
                    "T_world_to_ref": Pose.from_4x4mat(T_world_to_camera[names[i]]),
                    "T_world_to_target": Pose.from_4x4mat(T_world_to_camera[names[j]]),
                    "T_0to1": Pose.from_4x4mat(
                        np.float32(
                            T_world_to_camera[names[j]]
                            @ np.linalg.inv(T_world_to_camera[names[i]])
                        )
                    ),
                    "T_1to0": Pose.from_4x4mat(
                        np.float32(
                            T_world_to_camera[names[i]]
                            @ np.linalg.inv(T_world_to_camera[names[j]])
                        )
                    ),
                    "n_covisible_points": n_covisible_points[i, j],
                }
                for (i, j) in valid_pairs
            ]

        # Print some info
        print("[Info] Successfully initialized dataset")
        print("\t Name: ETH3D")
        print("----------------------------------------")

    def download_eth3d(self):
        data_dir = DATA_PATH / self.conf.data_dir
        tmp_dir = data_dir.parent / "ETH3D_tmp"
        if tmp_dir.exists():
            shutil.rmtree(tmp_dir)
        tmp_dir.mkdir(exist_ok=True, parents=True)
        url_base = "https://cvg-data.inf.ethz.ch/SOLD2/SOLD2_ETH3D_undistorted/"
        zip_name = "ETH3D_undistorted.zip"
        zip_path = tmp_dir / zip_name
        torch.hub.download_url_to_file(url_base + zip_name, zip_path)
        with zipfile.ZipFile(zip_path, "r") as zip_ref:
            zip_ref.extractall(tmp_dir)
        shutil.move(tmp_dir / zip_name.split(".")[0], data_dir)

    def get_dataset(self, split):
        return ETH3DDataset(self.conf)

    def _read_image(self, img_path):
        img = load_image(img_path, grayscale=self.grayscale)
        shape = img.shape[-2:]
        # instead of INTER_AREA this does bilinear interpolation with antialiasing
        img_data = ImagePreprocessor({"resize": max(shape) // self.downsize_factor})(
            img
        )
        return img_data

    def read_depth(self, depth_path):
        if self.downsize_factor != 8:
            raise ValueError(
                "Undistorted depth only available for low res"
                + " images(downsize_factor = 8)."
            )
        depth_img = cv2.imread(depth_path, cv2.IMREAD_ANYDEPTH)
        depth_img = depth_img.astype(np.float32) / 256

        return depth_img

    def __getitem__(self, idx):
        """Returns the data associated to a pair of images (reference, target)
        that are co-visible."""
        data = self.data[idx]
        # Load the images
        view0 = data.pop("view0")
        view1 = data.pop("view1")
        view0 = {**view0, **self._read_image(view0["img_path"])}
        view1 = {**view1, **self._read_image(view1["img_path"])}
        view0["scales"] = np.array([1.0, 1]).astype(np.float32)
        view1["scales"] = np.array([1.0, 1]).astype(np.float32)

        # Load the depths
        view0["depth"] = self.read_depth(view0["depth_path"])
        view1["depth"] = self.read_depth(view1["depth_path"])

        outputs = {
            **data,
            "view0": view0,
            "view1": view1,
            "name": f"{view0['name']}_{view1['name']}",
        }

        return outputs

    def __len__(self):
        return len(self.data)