File size: 5,356 Bytes
4d4dd90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as tvm

class ResNet18(nn.Module):
    def __init__(self, pretrained=False) -> None:
        super().__init__()
        self.net = tvm.resnet18(pretrained=pretrained)
    def forward(self, x):
        self = self.net
        x1 = x
        x = self.conv1(x1)
        x = self.bn1(x)
        x2 = self.relu(x)
        x = self.maxpool(x2)
        x4 = self.layer1(x)
        x8 = self.layer2(x4)
        x16 = self.layer3(x8)
        x32 = self.layer4(x16)
        return {32:x32,16:x16,8:x8,4:x4,2:x2,1:x1}

    def train(self, mode=True):
        super().train(mode)
        for m in self.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()
            pass

class ResNet50(nn.Module):
    def __init__(self, pretrained=False, high_res = False, weights = None, dilation = None, freeze_bn = True, anti_aliased = False) -> None:
        super().__init__()
        if dilation is None:
            dilation = [False,False,False]
        if anti_aliased:
            pass
        else:
            if weights is not None:
                self.net = tvm.resnet50(weights = weights,replace_stride_with_dilation=dilation)
            else:
                self.net = tvm.resnet50(pretrained=pretrained,replace_stride_with_dilation=dilation)

        del self.net.fc
        self.high_res = high_res
        self.freeze_bn = freeze_bn
    def forward(self, x):
        net = self.net
        feats = {1:x}
        x = net.conv1(x)
        x = net.bn1(x)
        x = net.relu(x)
        feats[2] = x 
        x = net.maxpool(x)
        x = net.layer1(x)
        feats[4] = x 
        x = net.layer2(x)
        feats[8] = x  
        x = net.layer3(x)
        feats[16] = x
        x = net.layer4(x)
        feats[32] = x
        return feats

    def train(self, mode=True):
        super().train(mode)
        if self.freeze_bn:
            for m in self.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()
                pass




class ResNet101(nn.Module):
    def __init__(self, pretrained=False, high_res = False, weights = None) -> None:
        super().__init__()
        if weights is not None:
            self.net = tvm.resnet101(weights = weights)
        else:
            self.net = tvm.resnet101(pretrained=pretrained)
        self.high_res = high_res
        self.scale_factor = 1 if not high_res else 1.5
    def forward(self, x):
        net = self.net
        feats = {1:x}
        sf = self.scale_factor
        if self.high_res:
            x = F.interpolate(x, scale_factor=sf, align_corners=False, mode="bicubic")
        x = net.conv1(x)
        x = net.bn1(x)
        x = net.relu(x)
        feats[2] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")    
        x = net.maxpool(x)
        x = net.layer1(x)
        feats[4] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")    
        x = net.layer2(x)
        feats[8] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")    
        x = net.layer3(x)
        feats[16] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")    
        x = net.layer4(x)
        feats[32] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")    
        return feats

    def train(self, mode=True):
        super().train(mode)
        for m in self.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()
            pass


class WideResNet50(nn.Module):
    def __init__(self, pretrained=False, high_res = False, weights = None) -> None:
        super().__init__()
        if weights is not None:
            self.net = tvm.wide_resnet50_2(weights = weights)
        else:
            self.net = tvm.wide_resnet50_2(pretrained=pretrained)
        self.high_res = high_res
        self.scale_factor = 1 if not high_res else 1.5
    def forward(self, x):
        net = self.net
        feats = {1:x}
        sf = self.scale_factor
        if self.high_res:
            x = F.interpolate(x, scale_factor=sf, align_corners=False, mode="bicubic")
        x = net.conv1(x)
        x = net.bn1(x)
        x = net.relu(x)
        feats[2] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")    
        x = net.maxpool(x)
        x = net.layer1(x)
        feats[4] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")    
        x = net.layer2(x)
        feats[8] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")    
        x = net.layer3(x)
        feats[16] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")    
        x = net.layer4(x)
        feats[32] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")    
        return feats

    def train(self, mode=True):
        super().train(mode)
        for m in self.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()
            pass