File size: 7,841 Bytes
a80d6bb
 
 
 
 
 
 
c74a070
 
 
a80d6bb
 
c74a070
a80d6bb
c74a070
a80d6bb
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
c74a070
 
 
a80d6bb
 
 
 
 
 
 
 
c74a070
a80d6bb
 
c74a070
 
 
 
 
 
 
a80d6bb
c74a070
 
a80d6bb
 
 
 
 
c74a070
 
a80d6bb
c74a070
 
 
a80d6bb
 
 
c74a070
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
 
 
a80d6bb
 
 
 
 
 
c74a070
 
a80d6bb
 
 
c74a070
 
 
 
 
 
a80d6bb
 
 
c74a070
 
a80d6bb
 
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
c74a070
 
 
 
a80d6bb
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
 
a80d6bb
 
c74a070
a80d6bb
c74a070
a80d6bb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

from .geom import rnd_sample, interpolate


class NghSampler2(nn.Module):
    """Similar to NghSampler, but doesnt warp the 2nd image.
    Distance to GT =>  0 ... pos_d ... neg_d ... ngh
    Pixel label    =>  + + + + + + 0 0 - - - - - - -

    Subsample on query side: if > 0, regular grid
                                < 0, random points
    In both cases, the number of query points is = W*H/subq**2
    """

    def __init__(
        self,
        ngh,
        subq=1,
        subd=1,
        pos_d=0,
        neg_d=2,
        border=None,
        maxpool_pos=True,
        subd_neg=0,
    ):
        nn.Module.__init__(self)
        assert 0 <= pos_d < neg_d <= (ngh if ngh else 99)
        self.ngh = ngh
        self.pos_d = pos_d
        self.neg_d = neg_d
        assert subd <= ngh or ngh == 0
        assert subq != 0
        self.sub_q = subq
        self.sub_d = subd
        self.sub_d_neg = subd_neg
        if border is None:
            border = ngh
        assert border >= ngh, "border has to be larger than ngh"
        self.border = border
        self.maxpool_pos = maxpool_pos
        self.precompute_offsets()

    def precompute_offsets(self):
        pos_d2 = self.pos_d**2
        neg_d2 = self.neg_d**2
        rad2 = self.ngh**2
        rad = (self.ngh // self.sub_d) * self.ngh  # make an integer multiple
        pos = []
        neg = []
        for j in range(-rad, rad + 1, self.sub_d):
            for i in range(-rad, rad + 1, self.sub_d):
                d2 = i * i + j * j
                if d2 <= pos_d2:
                    pos.append((i, j))
                elif neg_d2 <= d2 <= rad2:
                    neg.append((i, j))

        self.register_buffer("pos_offsets", torch.LongTensor(pos).view(-1, 2).t())
        self.register_buffer("neg_offsets", torch.LongTensor(neg).view(-1, 2).t())

    def gen_grid(self, step, B, H, W, dev):
        b1 = torch.arange(B, device=dev)
        if step > 0:
            # regular grid
            x1 = torch.arange(self.border, W - self.border, step, device=dev)
            y1 = torch.arange(self.border, H - self.border, step, device=dev)
            H1, W1 = len(y1), len(x1)
            x1 = x1[None, None, :].expand(B, H1, W1).reshape(-1)
            y1 = y1[None, :, None].expand(B, H1, W1).reshape(-1)
            b1 = b1[:, None, None].expand(B, H1, W1).reshape(-1)
            shape = (B, H1, W1)
        else:
            # randomly spread
            n = (H - 2 * self.border) * (W - 2 * self.border) // step**2
            x1 = torch.randint(self.border, W - self.border, (n,), device=dev)
            y1 = torch.randint(self.border, H - self.border, (n,), device=dev)
            x1 = x1[None, :].expand(B, n).reshape(-1)
            y1 = y1[None, :].expand(B, n).reshape(-1)
            b1 = b1[:, None].expand(B, n).reshape(-1)
            shape = (B, n)
        return b1, y1, x1, shape

    def forward(self, feat0, feat1, conf0, conf1, pos0, pos1, B, H, W, N=2500):
        pscores_ls, nscores_ls, distractors_ls = [], [], []
        valid_feat0_ls = []
        valid_pos1_ls, valid_pos2_ls = [], []
        qconf_ls = []
        mask_ls = []

        for i in range(B):
            # positions in the first image
            tmp_mask = (
                (pos0[i][:, 1] >= self.border)
                * (pos0[i][:, 1] < W - self.border)
                * (pos0[i][:, 0] >= self.border)
                * (pos0[i][:, 0] < H - self.border)
            )

            selected_pos0 = pos0[i][tmp_mask]
            selected_pos1 = pos1[i][tmp_mask]
            valid_pos0, valid_pos1 = rnd_sample([selected_pos0, selected_pos1], N)

            # sample features from first image
            valid_feat0 = interpolate(valid_pos0 / 4, feat0[i])  # [N, 128]
            valid_feat0 = F.normalize(valid_feat0, p=2, dim=-1)  # [N, 128]
            qconf = interpolate(valid_pos0 / 4, conf0[i])

            # sample GT from second image
            mask = (
                (valid_pos1[:, 1] >= 0)
                * (valid_pos1[:, 1] < W)
                * (valid_pos1[:, 0] >= 0)
                * (valid_pos1[:, 0] < H)
            )

            def clamp(xy):
                xy = xy
                torch.clamp(xy[0], 0, H - 1, out=xy[0])
                torch.clamp(xy[1], 0, W - 1, out=xy[1])
                return xy

            # compute positive scores
            valid_pos1p = clamp(
                valid_pos1.t()[:, None, :]
                + self.pos_offsets[:, :, None].to(valid_pos1.device)
            )  # [2, 29, N]
            valid_pos1p = valid_pos1p.permute(1, 2, 0).reshape(
                -1, 2
            )  # [29, N, 2] -> [29*N, 2]
            valid_feat1p = interpolate(valid_pos1p / 4, feat1[i]).reshape(
                self.pos_offsets.shape[-1], -1, 128
            )  # [29, N, 128]
            valid_feat1p = F.normalize(valid_feat1p, p=2, dim=-1)  # [29, N, 128]

            pscores = (
                (valid_feat0[None, :, :] * valid_feat1p).sum(dim=-1).t()
            )  # [N, 29]
            pscores, pos = pscores.max(dim=1, keepdim=True)
            sel = clamp(
                valid_pos1.t() + self.pos_offsets[:, pos.view(-1)].to(valid_pos1.device)
            )
            qconf = (qconf + interpolate(sel.t() / 4, conf1[i])) / 2

            # compute negative scores
            valid_pos1n = clamp(
                valid_pos1.t()[:, None, :]
                + self.neg_offsets[:, :, None].to(valid_pos1.device)
            )  # [2, 29, N]
            valid_pos1n = valid_pos1n.permute(1, 2, 0).reshape(
                -1, 2
            )  # [29, N, 2] -> [29*N, 2]
            valid_feat1n = interpolate(valid_pos1n / 4, feat1[i]).reshape(
                self.neg_offsets.shape[-1], -1, 128
            )  # [29, N, 128]
            valid_feat1n = F.normalize(valid_feat1n, p=2, dim=-1)  # [29, N, 128]
            nscores = (
                (valid_feat0[None, :, :] * valid_feat1n).sum(dim=-1).t()
            )  # [N, 29]

            if self.sub_d_neg:
                valid_pos2 = rnd_sample([selected_pos1], N)[0]
                distractors = interpolate(valid_pos2 / 4, feat1[i])
                distractors = F.normalize(distractors, p=2, dim=-1)

            pscores_ls.append(pscores)
            nscores_ls.append(nscores)
            distractors_ls.append(distractors)
            valid_feat0_ls.append(valid_feat0)
            valid_pos1_ls.append(valid_pos1)
            valid_pos2_ls.append(valid_pos2)
            qconf_ls.append(qconf)
            mask_ls.append(mask)

        N = np.min([len(i) for i in qconf_ls])

        # merge batches
        qconf = torch.stack([i[:N] for i in qconf_ls], dim=0).squeeze(-1)
        mask = torch.stack([i[:N] for i in mask_ls], dim=0)
        pscores = torch.cat([i[:N] for i in pscores_ls], dim=0)
        nscores = torch.cat([i[:N] for i in nscores_ls], dim=0)
        distractors = torch.cat([i[:N] for i in distractors_ls], dim=0)
        valid_feat0 = torch.cat([i[:N] for i in valid_feat0_ls], dim=0)
        valid_pos1 = torch.cat([i[:N] for i in valid_pos1_ls], dim=0)
        valid_pos2 = torch.cat([i[:N] for i in valid_pos2_ls], dim=0)

        dscores = torch.matmul(valid_feat0, distractors.t())
        dis2 = (valid_pos2[:, 1] - valid_pos1[:, 1][:, None]) ** 2 + (
            valid_pos2[:, 0] - valid_pos1[:, 0][:, None]
        ) ** 2
        b = torch.arange(B, device=dscores.device)[:, None].expand(B, N).reshape(-1)
        dis2 += (b != b[:, None]).long() * self.neg_d**2
        dscores[dis2 < self.neg_d**2] = 0
        scores = torch.cat((pscores, nscores, dscores), dim=1)

        gt = scores.new_zeros(scores.shape, dtype=torch.uint8)
        gt[:, : pscores.shape[1]] = 1

        return scores, gt, mask, qconf