File size: 3,276 Bytes
abd7b7e
 
 
 
 
 
 
 
a712711
 
 
bd20c9a
61eb35d
 
 
 
abd7b7e
352aacf
 
 
 
 
cac49a7
 
 
 
 
 
352aacf
 
 
 
abd7b7e
 
f2bbbf2
352aacf
 
 
a9b746b
352aacf
a9b746b
352aacf
 
abd7b7e
352aacf
abd7b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352aacf
abd7b7e
 
 
352aacf
abd7b7e
 
 
 
f2bbbf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56892c1
352aacf
 
abd7b7e
f2bbbf2
 
419425e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import gradio as gr

import cv2
from mtcnn.mtcnn import MTCNN
import tensorflow as tf
import tensorflow_addons
import numpy as np

import os
import zipfile


local_zip = "FINAL-EFFICIENTNETV2-B0.zip"
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('FINAL-EFFICIENTNETV2-B0')
zip_ref.close()

local_zip = "FINAL-EFFICIENTNETV2-S.zip"
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('FINAL-EFFICIENTNETV2-S')
zip_ref.close()

local_zip = "deepfakes-test-images.zip"
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('deepfakes-test-images')
zip_ref.close()


model_b0 = tf.keras.models.load_model("FINAL-EFFICIENTNETV2-B0")
model_s = tf.keras.models.load_model("FINAL-EFFICIENTNETV2-S")

detector = MTCNN()


def deepfakespredict(select_model, input_img ):

    tf.keras.backend.clear_session()
    
    if select_model == "EfficientNetV2-B0":
        model = model_b0
    elif select_model == "EfficientNetV2-B0":
        model = model_s
    
    text =""
    face = detector.detect_faces(input_img)

    if len(face) > 0:
        x, y, width, height = face[0]['box']
        x2, y2 = x + width, y + height

        cv2.rectangle(input_img, (x, y), (x2, y2), (0, 255, 0), 2)

        face_image = input_img[y:y2, x:x2]
        face_image2 = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
        face_image3 = cv2.resize(face_image2, (224, 224))
        face_image4 = face_image3/255

        pred = model.predict(np.expand_dims(face_image4, axis=0))[0]

        if pred[1] >= 0.6:
            text = "The image is fake."
        elif pred[0] >= 0.6:
            text = "The image is real."
        else:
            text = "The image might be real or fake."
            
    else:
        text = "Face is not detected in the image."

    return text, input_img, {labels[i]: float(pred[i]) for i in range(2)}


title="EfficientNetV2 Deepfakes Image Detector"
description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector. To use it, simply upload your image, or click one of the examples to load them."
examples = [
            [
                ['deepfakes-test-images/Fake-1.jpg'],
                ['deepfakes-test-images/Fake-2.jpg'],
                ['deepfakes-test-images/Fake-3.jpg'],
                ['deepfakes-test-images/Fake-4.jpg'],
                ['deepfakes-test-images/Fake-5.jpg']
            ],
            [
                ['deepfakes-test-images/Real-1.jpg'],
                ['deepfakes-test-images/Real-2.jpg'],
                ['deepfakes-test-images/Real-3.jpg'],
                ['deepfakes-test-images/Real-4.jpg'],
                ['deepfakes-test-images/Real-5.jpg'],
            ]
           ]
            
gr.Interface(deepfakespredict,
                     inputs = [gr.inputs.Radio(["EfficientNetV2-B0", "EfficientNetV2-S"], label = "Select model:"), "image"],
                     outputs=["text", gr.outputs.Image(type="pil", label="Detected face"), gr.outputs.Label(num_top_classes=None, type="auto", label="Confidence")],
                     title=title,
                     description=description,
                     examples = examples
                     ).launch(share=True)