File size: 8,149 Bytes
05fd390 4efa9a6 05fd390 9db9711 05fd390 62b04c4 463536c 9db9711 4efa9a6 05fd390 9db9711 05fd390 118c8fd 05fd390 463536c 05fd390 463536c 05fd390 62b04c4 05fd390 9db9711 05fd390 9db9711 05fd390 463536c 383a495 463536c 9db9711 05fd390 9db9711 463536c 05fd390 8f30316 05fd390 4efa9a6 05fd390 f559d19 9db9711 05fd390 463536c 05fd390 9db9711 463536c fc27a96 9db9711 05fd390 9db9711 05fd390 86cbf7f 463536c 118c8fd 463536c 9db9711 463536c 86cbf7f 05fd390 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import gradio as gr
import os
import subprocess
from subprocess import getoutput
from huggingface_hub import snapshot_download
hf_token = os.environ.get("HF_TOKEN")
is_shared_ui = True if "fffiloni/train-dreambooth-lora-sdxl" in os.environ['SPACE_ID'] else False
is_gpu_associated = torch.cuda.is_available()
if is_gpu_associated:
gpu_info = getoutput('nvidia-smi')
if("A10G" in gpu_info):
which_gpu = "A10G"
elif("T4" in gpu_info):
which_gpu = "T4"
else:
which_gpu = "CPU"
def set_accelerate_default_config():
try:
subprocess.run(["accelerate", "config", "default"], check=True)
print("Accelerate default config set successfully!")
except subprocess.CalledProcessError as e:
print(f"An error occurred: {e}")
def train_dreambooth_lora_sdxl(instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu):
script_filename = "train_dreambooth_lora_sdxl.py" # Assuming it's in the same folder
command = [
"accelerate",
"launch",
script_filename, # Use the local script
"--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0",
"--pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix",
f"--instance_data_dir={instance_data_dir}",
f"--output_dir={lora_trained_xl_folder}",
"--mixed_precision=fp16",
f"--instance_prompt={instance_prompt}",
"--resolution=1024",
"--train_batch_size=2",
"--gradient_accumulation_steps=2",
"--gradient_checkpointing",
"--learning_rate=1e-4",
"--lr_scheduler=constant",
"--lr_warmup_steps=0",
"--enable_xformers_memory_efficient_attention",
"--mixed_precision=fp16",
"--use_8bit_adam",
f"--max_train_steps={max_train_steps}",
f"--checkpointing_steps={checkpoint_steps}",
"--seed=0",
"--push_to_hub",
f"--hub_token={hf_token}"
]
try:
subprocess.run(command, check=True)
print("Training is finished!")
if remove_gpu:
swap_hardware(hf_token, "cpu-basic")
except subprocess.CalledProcessError as e:
print(f"An error occurred: {e}")
title="There was an error on during your training"
description=f'''
Unfortunately there was an error during training your {model_name} model.
Please check it out below. Feel free to report this issue to [SD-XL Dreambooth LoRa Training](https://huggingface.co/spaces/fffiloni/train-dreambooth-lora-sdxl):
```
{str(e)}
```
'''
swap_hardware(hf_token, "cpu-basic")
write_to_community(title,description,hf_token)
def main(dataset_id,
lora_trained_xl_folder,
instance_prompt,
max_train_steps,
checkpoint_steps,
remove_gpu):
if is_shared_ui:
raise gr.Error("This Space only works in duplicated instances")
if not is_gpu_associated:
raise gr.Error("Please associate a T4 or A10G GPU for this Space")
gr.Warning("## Training is ongoing β... You can close this tab if you like or just wait. If you did not check the `Remove GPU After training`, you can come back here to try your model and upload it after training. Don't forget to remove the GPU attribution after you are done. ")
dataset_repo = dataset_id
# Automatically set local_dir based on the last part of dataset_repo
repo_parts = dataset_repo.split("/")
local_dir = f"./{repo_parts[-1]}" # Use the last part of the split
# Check if the directory exists and create it if necessary
if not os.path.exists(local_dir):
os.makedirs(local_dir)
gr.Info("Downloading dataset ...")
snapshot_download(
dataset_repo,
local_dir=local_dir,
repo_type="dataset",
ignore_patterns=".gitattributes",
token=hf_token
)
set_accelerate_default_config()
gr.Info("Training begins ...")
instance_data_dir = repo_parts[-1]
train_dreambooth_lora_sdxl(instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu)
return f"Done, your trained model has been stored in your models library: your_user_name/{lora-trained-xl-folder}"
with gr.Blocks() as demo:
with gr.Column():
if is_shared_ui:
top_description = gr.HTML(f'''
<div class="gr-prose" style="max-width: 80%">
<h2>Attention - This Space doesn't work in this shared UI</h2>
<p>For it to work, you can duplicate the Space and run it on your own profile using a (paid) private T4-small or A10G-small GPU for training. A T4 costs US$0.60/h, so it should cost < US$1 to train most models using default settings with it! <a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
<img class="instruction" src="file=duplicate.png">
<img class="arrow" src="file=arrow.png" />
</div>
''')
else:
if(is_gpu_associated):
top_description = gr.HTML(f'''
<div class="gr-prose" style="max-width: 80%">
<h2>You have successfully associated a {which_gpu} GPU to the SD-XL Dreambooth LoRa Training Space π</h2>
<p>You can now train your model! You will be billed by the minute from when you activated the GPU until when it is turned it off.</p>
</div>
''')
else:
top_description = gr.HTML(f'''
<div class="gr-prose" style="max-width: 80%">
<h2>You have successfully duplicated the SD-XL Dreambooth LoRa Training Space π</h2>
<p>There's only one step left before you can train your model: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4-small or A10G-small GPU</b> to it (via the Settings tab)</a> and run the training below. You will be billed by the minute from when you activate the GPU until when it is turned it off.</p>
</div>
''')
with gr.Row():
dataset_id = gr.Textbox(label="Dataset ID", info="use one of your previously uploaded datasets on your HF profile", placeholder="diffusers/dog-example")
instance_prompt = gr.Textbox(label="Concept prompt", info="concept prompt - use a unique, made up word to avoid collisions")
with gr.Row():
model_output_folder = gr.Textbox(label="Output model folder name", placeholder="lora-trained-xl-folder")
max_train_steps = gr.Number(label="Max Training Steps", value=500)
checkpoint_steps = gr.Number(label="Checkpoints Steps", value=100)
remove_gpu = gr.Checkbox(label="Remove GPU After Training", value=True)
train_button = gr.Button("Train !")
status = gr.Textbox(label="Training status")
train_button.click(
fn = main,
inputs = [
dataset_id,
model_output_folder,
instance_prompt,
max_train_steps,
checkpoint_steps,
remove_gpu
],
outputs = [status]
)
demo.queue().launch() |