File size: 6,730 Bytes
445df8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# Todo: Load Image
import numpy as np
import torch
import matplotlib.pyplot as plt
import cv2
import streamlit as st
import os
# hide hamburger and customize footer
hide_menu= """
<style>
#MainMenu {
visibility:hidden;
}
footer{
visibility:visible;
}
footer:after{
content: 'With 🫶️ from Shubham Shankar.';
display:block;
position:relative;
color:grey;
padding;5px;
top:3px;
}
</style>
"""
# Styling ----------------------------------------------------------------------
st.image("icon.jpg", width=85)
st.title("NASAM")
st.subheader("Object Detection and Mask")
st.markdown(hide_menu, unsafe_allow_html=True)
# Intro ----------------------------------------------------------------------
st.write(
"""
Hi 👋, I'm **:red[Shubham Shankar]**, and welcome to my **:green[Object Detection + MASK Application]**! :rocket: This program makes use of **:blue[YOLO-NAS]** and **:orange[SAM]** model,
which was specially trained using the **:violet[Roboflow]** dataset. ✨
"""
)
st.markdown('---')
st.write(
"""
### App Interface!!
:dog: The web app has an easy-to-use interface.
1] **:green[Upload File]**: Upload an image using the provided button. The app will perform inference on the image using a machine learning model and display the results.
2] **:violet[Confidence Threshold]**: Adjust the confidence threshold to get a better result.
"""
)
st.markdown('---')
st.error(
"""
Connect with me on [**Github**](https://github.com/RATHOD-SHUBHAM) and [**LinkedIn**](https://www.linkedin.com/in/shubhamshankar/). ✨
""",
icon="🧟♂️",
)
st.markdown('---')
# remove file in a folder ----------------------------------------------------------------------
import shutil
folder = 'op_detection'
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print('Failed to delete %s. Reason: %s' % (file_path, e))
# Save File ------------------------------------------------------------------------------------------
def save_uploadedfile(uploadedfile):
with open(os.path.join("ip_image", uploadedfile.name), "wb") as f:
f.write(uploadedfile.getbuffer())
# Model ----------------------------------------------------------------------------------------------------
image_file = st.file_uploader("Upload An Image", type=['png','jpeg','jpg'])
if image_file is not None:
file_details = {"FileName":image_file.name,"FileType":image_file.type}
conf_threshold = st.slider('Confidence Threshold', min_value=0.0, max_value=1.0, value=0.35)
if st.button('RUN'):
st.write(file_details)
save_uploadedfile(image_file)
col1, col2, col3 = st.columns(3)
image = cv2.imread("ip_image/" + image_file.name)
with col1:
st.text("Raw Image")
st.image(image)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Todo: Development
from super_gradients.training import models
# define class name
class_names = ['Car boot', 'Car hood', 'Driver-s door - -F-R-', 'Fender - -F-L-', 'Fender - -F-R-', 'Fender - -R-L-', 'Fender - -R-R-', 'Front bumper', 'Headlight - -L-', 'Headlight - -R-', 'Passenger-s door - -F-L-', 'Passenger-s door - -R-L-', 'Passenger-s door - -R-R-', 'Rear bumper', 'Rear light - -L-', 'Rear light - -R-', 'Side bumper - -L-', 'Side bumper - -R-', 'Side mirror - -L-', 'Side mirror - -R-']
# Todo: Get the model
device = 'cuda' if torch.cuda.is_available() else "cpu"
model_nas = models.get('yolo_nas_l',
num_classes= 20,
checkpoint_path='nas_weight/ckpt_best.pth')
# Todo: Object detection prediction
model_nas.predict(image, conf = conf_threshold).save('op_detection')
with col2:
st.text("Detection Output")
st.image('op_detection/pred_0.jpg')
# Todo: Get BBOX
model_pred = list(model_nas.predict(image, conf = conf_threshold)._images_prediction_lst)
bboxes_xyxy = model_pred[0].prediction.bboxes_xyxy.tolist()
# Todo: SAM
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
from segment_anything import sam_model_registry, SamPredictor
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
sam_checkpoint = "sam_weight/sam_vit_h_4b8939.pth"
model_type = "vit_h"
device = 'cuda' if torch.cuda.is_available() else "cpu"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
predictor = SamPredictor(sam)
mask_generator = SamAutomaticMaskGenerator(sam)
# Todo: SAM predictor
predictor.set_image(image)
tensor_box = torch.tensor(bboxes_xyxy, device=predictor.device)
transformed_boxes = predictor.transform.apply_boxes_torch(tensor_box, image.shape[:2])
batch_masks, batch_scores, batch_logits = predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
plt.figure(figsize=(10, 10))
plt.imshow(image)
for mask in batch_masks:
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
plt.axis('off')
plt.savefig('my_image.jpg')
with col3:
st.text("Masked Output")
st.image('my_image.jpg') |