File size: 4,466 Bytes
4258cd5
 
f375838
 
4258cd5
 
 
 
f375838
 
 
4258cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
f375838
4258cd5
 
 
 
f375838
4258cd5
 
 
 
 
 
 
 
 
 
f375838
4258cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f375838
4258cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f375838
4258cd5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import pandas as pd
import numpy as np
import gradio as gr
from PIL import Image
from torch.nn import functional as F
from collections import OrderedDict
from torchvision import transforms
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_lightning import LightningModule, Trainer, seed_everything
import albumentations as A
from albumentations.pytorch import ToTensorV2
import torchvision.transforms as T
from model import YOLOv3
from train import YOLOTraining
import config
from utils import *
import numpy as np
import cv2
import albumentations as A
from utils import *
import random
from albumentations.pytorch import ToTensorV2

model = YOLOv3(num_classes=config.NUM_CLASSES)
model = YOLOTraining(model)
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False)
model.eval()

def yolo_predict(image: np.ndarray, iou_thresh: float = 0.5, thresh: float = 0.5):

    transforms =  A.Compose(
    [
        A.LongestMaxSize(max_size=config.IMAGE_SIZE),
        A.PadIfNeeded(
            min_height=config.IMAGE_SIZE, min_width=config.IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
        ),
        A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
        ToTensorV2(),
    ],
    )
    with torch.no_grad():
        transformed_image = transforms(image=image)["image"].unsqueeze(0).to(config.DEVICE)
        output = model(transformed_image)

        bboxes = [[] for _ in range(1)]
        for i in range(3):
            batch_size, A1, S, _, _ = output[i].shape
            anchor = config.SCALED_ANCHORS[i].to(config.DEVICE)
            boxes_scale_i = cells_to_bboxes(
                output[i].to(config.DEVICE), anchor, S=S, is_preds=True
            )
            for idx, (box) in enumerate(boxes_scale_i):
                bboxes[idx] += box

    nms_boxes = non_max_suppression(
        bboxes[0], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint",
    )
    plot_img = draw_predictions(image, nms_boxes, class_labels=config.PASCAL_CLASSES)
    
    return [plot_img]


def draw_predictions(image: np.ndarray, boxes: list[list], class_labels: list[str]) -> np.ndarray:
    """Plots predicted bounding boxes on the image"""

    colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels]

    im = np.array(image)
    height, width, _ = im.shape
    bbox_thick = int(0.6 * (height + width) / 600)

    # Create a Rectangle patch
    for box in boxes:
        assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
        class_pred = box[0]
        conf = box[1]
        box = box[2:]
        upper_left_x = box[0] - box[2] / 2
        upper_left_y = box[1] - box[3] / 2

        x1  = int(upper_left_x * width)
        y1 = int(upper_left_y * height)

        x2 = x1 + int(box[2] * width)
        y2 = y1 + int(box[3] * height)

        cv2.rectangle(
            image,
            (x1, y1), (x2, y2),
            color=colors[int(class_pred)],
            thickness=bbox_thick
        )
        text = f"{class_labels[int(class_pred)]}: {conf:.2f}"
        t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0]
        c3 = (x1 + t_size[0], y1 - t_size[1] - 3)

        cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1)
        cv2.putText(
            image,
            text,
            (x1, y1 - 2),
            cv2.FONT_HERSHEY_SIMPLEX,
            0.7,
            (0, 0, 0),
            bbox_thick // 2,
            lineType=cv2.LINE_AA,
        )

    return image

demo = gr.Interface(
    fn=yolo_predict,
    inputs=[
        gr.Image(shape=(config.IMAGE_SIZE,config.IMAGE_SIZE), label="Input Image"),
        gr.Slider(0, 1, value=0.5, step=0.05, label="IOU Threshold"),
        gr.Slider(0, 1, value=0.5, step=0.05, label="Threshold")
    ],
    outputs=gr.Gallery(rows=1, columns=1),
    examples=[
       ["examples/000001.jpg", 0.5, 0.5],
       ["examples/000002.jpg", 0.5, 0.5],
       ["examples/000003.jpg", 0.5, 0.5],
       ["examples/000004.jpg", 0.5, 0.5],
       ["examples/000005.jpg", 0.5, 0.5],
       ["examples/000006.jpg", 0.5, 0.5],
       ["examples/000007.jpg", 0.5, 0.5],
       ["examples/000008.jpg", 0.5, 0.5],
       ["examples/000009.jpg", 0.5, 0.5],
       ["examples/000010.jpg", 0.5, 0.5]
       ]
)

demo.launch()