Spaces:
Runtime error
Runtime error
File size: 2,041 Bytes
f466dd9 a9b8939 9e09422 cd715cb b5ad13a a9b8939 6d1d03a 8a0f059 f466dd9 b5ad13a a9b8939 8a0f059 6fffab8 f466dd9 b5ad13a 8a0f059 f466dd9 b5ad13a 8a0f059 b5ad13a 8a0f059 b5ad13a ca1d41c f466dd9 d05fa5e 95f0e46 f466dd9 a9b8939 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import gradio as gr
import torch
from diffusers import AutoPipelineForText2Image
import base64
from io import BytesIO
from generate_propmts import generate_prompt
from concurrent.futures import ThreadPoolExecutor
# Load the model once outside of the function
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
def generate_image(text, sentence_mapping, character_dict, selected_style):
try:
prompt, _ = generate_prompt(text, sentence_mapping, character_dict, selected_style)
image = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0]
buffered = BytesIO()
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
if isinstance(result, img_str):
image_bytes = base64.b64decode(result)
return image_bytes
except Exception as e:
print(f"Error generating image: {e}")
return None
def inference(text, sentence_mapping, character_dict, selected_style):
images = {}
# Here we assume `sentence_mapping` is a dictionary where keys are paragraph numbers and values are lists of sentences
grouped_sentences = sentence_mapping
with ThreadPoolExecutor() as executor:
futures = {}
for paragraph_number, sentences in grouped_sentences.items():
combined_sentence = " ".join(sentences)
futures[paragraph_number] = executor.submit(generate_image, combined_sentence, sentence_mapping, character_dict, selected_style)
for paragraph_number, future in futures.items():
images[paragraph_number] = future.result()
return images
gradio_interface = gr.Interface(
fn=inference,
inputs=[
gr.Textbox(label="Text"),
gr.Textbox(label="Sentence Mapping"),
gr.Textbox(label="Character Dict"),
gr.Dropdown(["Style 1", "Style 2", "Style 3"], label="Selected Style")
],
inputs=["text", "checkbox", gr.Slider(0, 100)],
outputs="text"
)
if __name__ == "__main__":
gradio_interface.launch()
|