Spaces:
Sleeping
Sleeping
File size: 5,797 Bytes
b18bbba a31a270 9499cff a31a270 034c5da 140cb01 b18bbba a31a270 034c5da a31a270 13d258a a31a270 13d258a a31a270 b18bbba a31a270 9499cff a31a270 7b52735 a31a270 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import dotenv
from openai import OpenAI
import os
from pypdf import PdfReader
import gradio as gr
import json
import requests
dotenv.load_dotenv(override=True)
openai_api_key = os.getenv("OPENAI_API_KEY")
pushover_user = os.getenv("PUSHOVER_USER")
pushover_token = os.getenv("PUSHOVER_TOKEN")
#if pushover_user and pushover_token:
# print("Pushover user and token found")
# print("Pushover user and token not found")
def send_pushover_notification(message):
url = "https://api.pushover.net/1/messages.json"
data = {
"token": os.getenv("PUSHOVER_TOKEN"),
"user": os.getenv("PUSHOVER_USER"),
"message": message
}
response = requests.post(url, data=data)
if response.status_code == 200:
print("Pushover notification sent successfully")
else:
print("Failed to send Pushover notification")
def get_pdf_text(pdf_path):
reader = PdfReader(pdf_path)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
def record_user_details(email, name="Not provided", notes="Not provided" ):
print(f"User details recorded: Name: {name}, Email: {email}, Notes: {notes}")
send_pushover_notification(f"Recording interest from : Name: {name}, Email: {email}, Notes: {notes}")
return {"recorded": "ok"}
def record_unknown_question(question):
print(f"Unknown question recorded: {question}")
send_pushover_notification(f"Unknown question recorded: {question}")
return {"recorded": "ok"}
record_user_details_json = {
"name" : "record_user_details",
"description" : "Record user details",
"parameters" : {
"type" : "object",
"properties" : {
"email" : {"type" : "string", "description" : "The email of the user"},
"name" : {"type" : "string", "description" : "The name of the user, if they provided it"},
"notes" : {"type" : "string", "description" : "Any additional information about conversation that worth's recording to given context"}
},
"required" : ["email"],
"additionalProperties" : False
}
}
record_unknown_question_json = {
"name" : "record_unknown_question",
"description" : "Record unknown question",
"parameters" : {
"type" : "object",
"properties" : {"question" : {"type" : "string", "description" : "The question that the user asked"}}
}
}
tools = [ {"type":"function", "function": record_user_details_json},
{"type" : "function", "function" : record_unknown_question_json}]
class Me :
def __init__(self):
self.openai = OpenAI()
self.name = "Ram Shah"
self.linked_profile = get_pdf_text("RamShah_Profile.pdf")
with open("Ram_summary.txt", "r", encoding="utf-8") as file:
self.summary = file.read()
self.name = "Ram Shah"
self.client = OpenAI(api_key=openai_api_key, base_url="https://generativelanguage.googleapis.com/v1beta/openai/")
def handle_tool_calls(self, tool_calls):
results = []
for tool_call in tool_calls :
tool_name = tool_call.function.name
print(f"Tool called: {tool_name}", flush=True)
tool = globals().get(tool_name)
arguments = json.loads(tool_call.function.arguments)
result = tool(**arguments) if tool else {}
results.append({"role" : "tool", "content" : json.dumps(result), "tool_call_id" : tool_call.id})
return results
def system_prompt(self):
system_prompt = f"You are acting as Ram Shah. You are answering questions on Ram Shah's website, \
particularly questions related to Ram Shah's career, background, skills and experience. \
Your responsibility is to represent Ram Shah for interactions on the website as faithfully as possible. \
You are given a summary of Ram Shah's background and LinkedIn profile which you can use to answer questions. \
Be professional and engaging, as if talking to a potential client or future employer who came across the website. \
If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \
If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. "
system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linked_profile}\n\n"
system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
return system_prompt
def chat_with_me(self, message, history):
messages = [{"role" : "system", "content" : self.system_prompt()}] + history + [{"role" : "user","content" : message}]
done = False
while not done:
# this is the call to LLM - passing tool json
response = self.client.chat.completions.create(model="gemini-1.5-flash", messages=messages, tools=tools)
finish_reson = response.choices[0].finish_reason
if finish_reson == "tool_calls":
message = response.choices[0].message
tool_calls = message.tool_calls
results = self.handle_tool_calls(tool_calls)
messages.append(message)
messages.extend(results)
else:
done = True
return response.choices[0].message.content
if __name__ == "__main__":
me = Me()
gr.ChatInterface(me.chat_with_me, type="messages").launch(share=True)
|