Spaces:
Runtime error
Runtime error
File size: 6,369 Bytes
d1b8c9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import datetime
import os
import random
import time
import ruamel.yaml as yaml
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from data.vqa_datamodules import VQADataModule
from model import albef_model_for_vqa
from torch.optim import AdamW
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
from utils import (
add_weight_decay,
get_rank,
get_world_size,
init_distributed_mode,
is_dist_avail_and_initialized,
is_main_process,
save_result,
)
def train(model, datamodule, args, device):
model_without_ddp = model.module if is_dist_avail_and_initialized() else model
model.train()
optimizer_params = add_weight_decay(model, args["weight_decay"])
optimizer = AdamW(optimizer_params, lr=args["lr"])
scheduler = CosineAnnealingWarmRestarts(
optimizer, T_0=args["max_epochs"], eta_min=args["min_lr"]
)
step_size = args["step_size"]
warmup_steps = args["warmup_steps"]
warmup_iterations = warmup_steps * step_size
data_loader = datamodule.train_dataloader(
is_distributed=is_dist_avail_and_initialized(),
num_tasks=get_world_size(),
global_rank=get_rank(),
)
start_time = time.time()
for epoch in range(args["max_epochs"]):
if is_dist_avail_and_initialized():
data_loader.sampler.set_epoch(epoch)
if epoch > 0:
scheduler.step(epoch + warmup_steps)
for batch, (
images,
questions,
questions_atts,
answers,
answers_atts,
ans_weights,
ans_lengths,
) in enumerate(data_loader):
if epoch > 0:
alpha = args["alpha"]
else:
alpha = args["alpha"] * min(1, batch / len(data_loader))
images = images.to(device, non_blocking=True)
questions = questions.to(device)
questions_atts = questions_atts.to(device)
answers = answers.to(device)
answers_atts = answers_atts.to(device)
ans_weights = ans_weights.to(device)
loss = model(
images,
questions,
questions_atts,
answers,
answers_atts,
ans_weights=ans_weights,
ans_lengths=ans_lengths,
alpha=alpha,
is_train=True,
)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch == 0 and batch % step_size == 0 and batch <= warmup_iterations:
scheduler.step(batch // step_size)
if batch % args["log_every_n_steps"] == 0:
total_time = time.time() - start_time
time_str = "time {},".format(
datetime.timedelta(seconds=int(total_time))
)
epoch_str = "epoch {}/{},".format(epoch, args["max_epochs"])
batch_str = "batch {}/{},".format(batch, len(data_loader))
loss_str = "loss {}".format(loss.item())
print(time_str, epoch_str, batch_str, loss_str)
if is_main_process():
save_obj = {
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"epoch": epoch,
}
torch.save(
save_obj,
os.path.join(args["checkpoint_root"], "vqa_checkpoint_%02d.pt" % epoch),
)
if is_dist_avail_and_initialized():
dist.barrier()
@torch.no_grad()
def evaluation(model, datamodule, args, device):
model.eval()
result = []
answer_list = datamodule.test_dataset.answer_list
answer_input_ids = datamodule.test_dataset.answer_input_ids.to(device)
answer_atts = datamodule.test_dataset.answer_attention_mask.to(device)
data_loader = datamodule.test_dataloader(
is_distributed=is_dist_avail_and_initialized(),
num_tasks=get_world_size(),
global_rank=get_rank(),
)
start_time = time.time()
for batch, (img, ques, ques_atts, ques_ids) in enumerate(data_loader):
img = img.to(device, non_blocking=True)
ques = ques.to(device)
ques_atts = ques_atts.to(device)
topk_ids, topk_probs = model(
img,
ques,
ques_atts,
answer_input_ids,
answer_atts,
k=args["k_test"],
is_train=False,
)
for ques_id, topk_id, topk_prob in zip(ques_ids, topk_ids, topk_probs):
_, pred = topk_prob.max(dim=0)
result.append(
{"question_id": ques_id, "answer": answer_list[topk_id[pred]]}
)
if batch % args["log_every_n_steps"] == 0:
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(
"time {}, batch {}/{}".format(total_time_str, batch, len(data_loader))
)
return result
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--config", default="./examples/albef/configs/vqa.yaml")
args = parser.parse_args()
config = yaml.load(open(args.config, "r"), Loader=yaml.Loader)
init_distributed_mode(config)
device = torch.device(config["device"])
seed = config["seed"] + get_rank()
torch.manual_seed(seed)
random.seed(seed)
cudnn.benchmark = True
datamodule = VQADataModule(**config["datamodule_args"])
model = albef_model_for_vqa(config, pretrained=True)
model = model.to(device)
if is_dist_avail_and_initialized():
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[config["gpu"]]
)
train(model, datamodule, config["training_args"], device)
result = evaluation(model, datamodule, config["eval_args"], device)
save_result(result, config["output_root"], "vqa_output")
if __name__ == "__main__":
main()
|