Spaces:
Sleeping
Sleeping
File size: 4,812 Bytes
b5fadc4 69067ae 7467739 b5fadc4 9061ed1 013ab59 be5399f 013ab59 0197ed3 69067ae 1547e12 7494646 1547e12 7494646 be5399f 1547e12 7467739 69067ae 7467739 b5fadc4 7467739 adb5e2a 7467739 685e8d2 8994492 b5fadc4 8994492 b5fadc4 9061ed1 8994492 b5fadc4 9061ed1 1547e12 a3e60d6 69067ae 7467739 69067ae 7467739 69067ae 7467739 8ab530a 69067ae b5fadc4 8ab530a 7494646 8994492 b5fadc4 8994492 b5fadc4 8994492 b5fadc4 9061ed1 7467739 7494646 9061ed1 0197ed3 8994492 69067ae 9061ed1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import torch
from flask import Flask, render_template, request, jsonify
import os
from transformers import pipeline
from gtts import gTTS
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from waitress import serve
from flask import Flask, render_template, request, jsonify, redirect, url_for, session
from flask_session import Session # Import the Session class
from flask.sessions import SecureCookieSessionInterface # Import the class
from salesforce import get_salesforce_connection
import os
# Initialize Flask app and Salesforce connection
print("Starting app...")
app = Flask(__name__)
print("Flask app initialized.")
# Add debug logs in Salesforce connection setup
sf = get_salesforce_connection()
print("Salesforce connection established.")
# Set the secret key to handle sessions securely
app.secret_key = os.getenv("SECRET_KEY", "sSSjyhInIsUohKpG8sHzty2q") # Replace with a secure key
# Configure the session type
app.config["SESSION_TYPE"] = "filesystem" # Use filesystem for session storage
#app.config["SESSION_COOKIE_NAME"] = "my_session" # Optional: Change session cookie name
app.config["SESSION_COOKIE_SECURE"] = True # Ensure cookies are sent over HTTPS
app.config["SESSION_COOKIE_SAMESITE"] = "None" # Allow cross-site cookies
# Initialize the session
Session(app) # Correctly initialize the Session object
print("Session interface configured.")
# Ensure secure session handling for environments like Hugging Face
app.session_interface = SecureCookieSessionInterface()
print("Session interface configured.")
app = Flask(__name__)
# Use whisper-small for faster processing and better speed
device = "cuda" if torch.cuda.is_available() else "cpu"
asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if device == "cuda" else -1)
def query_salesforce_data(sf):
# Example of querying a customer record
try:
# Query the Customer_Login__c object
customers = sf.query("SELECT Id, Name FROM Customer_Login__c LIMIT 5")
# Loop through the records returned by the query
for customer in customers['records']:
print(customer['Id'], customer['Name'])
except Exception as e:
print(f"Error querying Salesforce: {e}")
# Function to generate audio prompts
def generate_audio_prompt(text, filename):
tts = gTTS(text=text, lang="en")
tts.save(os.path.join("static", filename))
# Generate required voice prompts
prompts = {
"welcome": "Welcome to Biryani Hub.",
"ask_name": "Tell me your name.",
"ask_email": "Please provide your email address.",
"thank_you": "Thank you for registration."
}
for key, text in prompts.items():
generate_audio_prompt(text, f"{key}.mp3")
# Symbol mapping for proper recognition
SYMBOL_MAPPING = {
"at the rate": "@",
"at": "@",
"dot": ".",
"underscore": "_",
"hash": "#",
"plus": "+",
"dash": "-",
"comma": ",",
"space": " "
}
# Function to convert audio to WAV format
def convert_to_wav(input_path, output_path):
try:
audio = AudioSegment.from_file(input_path)
audio = audio.set_frame_rate(16000).set_channels(1) # Convert to 16kHz, mono
audio.export(output_path, format="wav")
except Exception as e:
raise Exception(f"Audio conversion failed: {str(e)}")
# Function to check if audio contains actual speech
def is_silent_audio(audio_path):
audio = AudioSegment.from_wav(audio_path)
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16) # Reduced silence duration
return len(nonsilent_parts) == 0 # If no speech detected
@app.route("/")
def index():
return render_template("index.html")
@app.route("/transcribe", methods=["POST"])
def transcribe():
if "audio" not in request.files:
return jsonify({"error": "No audio file provided"}), 400
audio_file = request.files["audio"]
input_audio_path = os.path.join("static", "temp_input.wav")
output_audio_path = os.path.join("static", "temp.wav")
audio_file.save(input_audio_path)
try:
# Convert to WAV
convert_to_wav(input_audio_path, output_audio_path)
# Check for silence
if is_silent_audio(output_audio_path):
return jsonify({"error": "No speech detected. Please try again."}), 400
# Use Whisper ASR model for transcription
result = asr_model(output_audio_path, generate_kwargs={"language": "en"})
transcribed_text = result["text"].strip().capitalize()
return jsonify({"text": transcribed_text})
except Exception as e:
return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500
# Start Production Server
if __name__ == "__main__":
serve(app, host="0.0.0.0", port=7860)
|