File size: 40,017 Bytes
b13cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
from locale import strcoll
from datasets import load_dataset
import numpy as np
import torch
from torch import optim
from torch.nn import functional as F
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.optimization import Adafactor
from transformers import get_linear_schedule_with_warmup
from tqdm.notebook import tqdm
import random
import sacrebleu
import os
import pandas as pd
from sklearn.model_selection import train_test_split
import torch.multiprocessing as mp
from torch.multiprocessing import Process, Queue
from joblib import Parallel, delayed,parallel_backend
import sys
from functools import partial
import json 
import time
import numpy as np
from datetime import datetime


class Config():
    def __init__(self,args) -> None:
        
        self.homepath = args.homepath
        self.prediction_path = os.path.join(args.homepath,args.prediction_path)
        # Use 'google/mt5-small' for non-pro cloab users
        self.model_repo = 'google/mt5-base'
        self.model_path_dir = args.homepath
        self.model_name = f'{args.model_name}.pt'
        self.bt_data_dir = os.path.join(args.homepath,args.bt_data_dir)

        #Data part
        self.parallel_dir= os.path.join(args.homepath,args.parallel_dir)
        self.mono_dir= os.path.join(args.homepath,args.mono_dir)

        self.log = os.path.join(args.homepath,args.log)
        self.mono_data_limit = args.mono_data_limit
        self.mono_data_for_noise_limit=args.mono_data_for_noise_limit
        #Training params
        self.n_epochs = args.n_epochs
        self.n_bt_epochs=args.n_bt_epochs

        self.batch_size = args.batch_size
        self.max_seq_len = args.max_seq_len
        self.min_seq_len = args.min_seq_len
        self.checkpoint_freq = args.checkpoint_freq
        self.lr = 1e-4
        self.print_freq = args.print_freq
        self.use_multiprocessing  = args.use_multiprocessing

        self.num_cores = mp.cpu_count() 
        self.NUM_PRETRAIN = args.num_pretrain_steps
        self.NUM_BACKTRANSLATION_TIMES =args.num_backtranslation_steps
        self.do_backtranslation=args.do_backtranslation
        self.now_on_bt=False
        self.bt_time=0
        self.using_reconstruction= args.use_reconstruction
        self.num_return_sequences_bt=2
        self.use_torch_data_parallel = args.use_torch_data_parallel

        self.gradient_accumulation_batch = args.gradient_accumulation_batch
        self.num_beams = args.num_beams

        self.best_loss = 1000
        self.best_loss_delta = 0.00000001
        self.patience=args.patience
        self.L2=0.0000001
        self.dropout=args.dropout

        self.drop_prob=args.drop_probability
        self.num_swaps=args.num_swaps

        self.verbose=args.verbose

        self.now_on_test=False

        #Initialization of state dict which will be saved during training
        self.state_dict = {'batch_idx': 0,'epoch':0,'bt_time':self.bt_time,'best_loss':self.best_loss}
        self.state_dict_check = {'batch_idx': 0,'epoch':0,'bt_time':self.bt_time,'best_loss':self.best_loss} #this is for tracing training after abrupt end!



        self.device = torch.device('cuda' if True and torch.cuda.is_available() else 'cpu')
            
        #We will be leveraging parallel and monolingual data for each of these languages.
        #parallel data will be saved in a central 'parallel_data 'folder as 'src'_'tg'_parallel.tsv 
        #monolingual data will be saved in another folder called 'monolingual_data' as 'lg'_mono.tsv

        #Each tsv file is of the form "input", "output"
        self.LANG_TOKEN_MAPPING = {
            'ig': '<ig>',
            'fon': '<fon>',
            'en': '<en>',
            'fr': '<fr>',
            'rw':'<rw>',
            'yo':'<yo>',
            'xh':'<xh>',
            'sw':'<sw>'
        }


        self.truncation=True
            
        


def beautify_time(time):
    hr = time//(3600)
    mins = (time-(hr*3600))//60
    rest = time -(hr*3600) - (mins*60)
    #DARIA's implementation!
    sp = ""
    if hr >=1:
        sp += '{} hours'.format(hr)
    if mins >=1:
        sp += ' {} mins'.format(mins)
    if rest >=1:
        sp += ' {} seconds'.format(rest)
    return sp



def word_delete(x,config):
    noise=[]
    words = x.split(' ')
    if len(words) == 1:
        return x
    for w in words:
        a= np.random.choice([0,1], 1, p=[config.drop_prob, 1-config.drop_prob])
        if a[0]==1: #It means don't delete
            noise.append(w)
    #if you end up deleting all words, just return a random word
    if len(noise) == 0:
        rand_int = random.randint(0, len(words)-1)
        return [words[rand_int]]        
            
    return ' '.join(noise)
    
def swap_word(new_words):
    
    random_idx_1 = random.randint(0, len(new_words)-1)
    random_idx_2 = random_idx_1
    counter = 0
    
    while random_idx_2 == random_idx_1:
        random_idx_2 = random.randint(0, len(new_words)-1)
        counter += 1
        
        if counter > 3:
            return new_words
    
    new_words[random_idx_1], new_words[random_idx_2] = new_words[random_idx_2], new_words[random_idx_1] 
    return new_words

def random_swap(words, n):
    
    words = words.split()
    new_words = words.copy()
    
    for _ in range(n):
        new_words = swap_word(new_words)
        
    sentence = ' '.join(new_words)
    
    return sentence



def get_dict(input,target,src,tgt):
  inp = [i for i in input]
  target_ = [ i for i in target]
  s= [src for i in range(len(inp))]
  t = [tgt for i in range(len(target_))]
  return [{'inputs':inp_,'targets':target__,'src':s_,'tgt':t_} for inp_,target__,s_,t_ in zip(inp,target_,s,t)]

def get_dict_mono(input,src,config):
  index = [i for i in range(len(input))]
  ids = random.sample(index,config.mono_data_limit)
  inp = [input[i] for i in ids]
  s= [src for i in range(len(inp))]
  data=[]
  for lang in config.LANG_TOKEN_MAPPING.keys():
    if lang!=src and lang not in ['en','fr']:
      data.extend([{'inputs':inp_,'src':s_,'tgt':lang} for inp_,s_ in zip(inp,s)])
  return data

def get_dict_mono_noise(input,src,config):
  index = [i for i in range(len(input))]
  ids = random.sample(index,config.mono_data_for_noise_limit)
  inp = [input[i] for i in ids]
  noised = [word_delete(random_swap(str(x),config.num_swaps),config) for x in inp]
  s= [src for i in range(len(inp))]
  data=[]
  data.extend([{'inputs':noise_,'targets':inp_,'src':s_,'tgt':s_} for inp_,s_,noise_ in zip(inp,s,noised)])
  return data


def compress(input,target,src,tgt):
  return {'inputs':input,'targets':target,'src':src,'tgt':tgt}


def make_dataset(config,mode):
  if mode!='eval' and mode!='train' and mode!='test':
    raise Exception('mode is either train or eval or test!')
  else:
  
    files = [f.name for f in os.scandir(config.parallel_dir) ]
    files = [f for f in files if f.split('.')[-1]=='tsv' and f.split('.tsv')[0].endswith(mode) and len(f.split('_'))>2 ]
    data = [(f_.split('_')[0],f_.split('_')[1],pd.read_csv(os.path.join(config.parallel_dir,f_), sep="\t"))  for f_ in files]
    dict_ = [get_dict(df['input'],df['target'],src,tgt) for src,tgt,df in data]
  return [item for sublist in dict_ for item in sublist]
  


def get_model_translation(config,model,tokenizer,sentence,tgt):
  if config.use_torch_data_parallel:
    max_seq_len_ = model.module.config.max_length
  else:
    max_seq_len_ = model.config.max_length
  input_ids = encode_input_str(config,text = sentence,target_lang = tgt,tokenizer = tokenizer,seq_len = max_seq_len_).unsqueeze(0).to(config.device)
  if config.use_torch_data_parallel:
    out = model.module.generate(input_ids,num_beams=3,do_sample=True, num_return_sequences=config.num_return_sequences_bt,max_length=config.max_seq_len,min_length=config.min_seq_len)
  else:
    out = model.generate(input_ids,num_beams=3, do_sample=True,num_return_sequences=config.num_return_sequences_bt,max_length=config.max_seq_len,min_length=config.min_seq_len)
    
  out_id = [i for i in range(config.num_return_sequences_bt)]
  id_ = random.sample(out_id,1)
  
  return tokenizer.decode(out[id_][0], skip_special_tokens=True)
  

def do_job(t,id_,tokenizers):
    tokenizer = tokenizers[id_ % len(tokenizers)]
    #We flip the input as target and vice versa in order to have target-side backtranslation (where source side is synthetic). 
    return {'inputs':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'targets':t['inputs'],'src':t['tgt'],'tgt':t['src']}
    #return {'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']}


def do_job_pmap(t):
    #tokenizer = tokenizers[id_ % len(tokenizers)]
    return {'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']}

def do_job_pool(bt_data,model,id_,tokenizers,config,mono_data):
    tokenizer = tokenizers[id_]
    if config.verbose:
        print(f"Mono data inside job pool: {mono_data}")
    sys.stdout.flush()
    res = [{'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']} for t in mono_data]
    bt_data.put(res)
    return None
    
def mono_data_(config):
  #Find and prepare all the mono data in the directory
  files_ = [f.name for f in os.scandir(config.mono_dir) ]
  files = [f for f in files_ if f.endswith('tsv') and f.split('.tsv')[0].endswith('mono')]
  if config.verbose:
      print("Generating data for back translation")
      print(f"Files found in mono dir: {files}")
  data = [(f_.split('_')[0],pd.read_csv(os.path.join(config.mono_dir,f_), sep="\t"))  for f_ in files]
  dict_ = [get_dict_mono(df['input'],src,config) for src,df in data]
  mono_data = [item for sublist in dict_ for item in sublist]
  return mono_data
  
def mono_data_noise(config):
  #Find and prepare all the mono data in the directory
  files_ = [f.name for f in os.scandir(config.mono_dir) ]
  files = [f for f in files_ if f.endswith('tsv') and f.split('.tsv')[0].endswith('mono')]
  if config.verbose:
      print("Generating data for back translation")
      print(f"Files found in mono dir: {files}")
  data = [(f_.split('_')[0],pd.read_csv(os.path.join(config.mono_dir,f_), sep="\t"))  for f_ in files]
  dict_ = [get_dict_mono_noise(df['input'],src,config) for src,df in data]
  mono_data = [item for sublist in dict_ for item in sublist]
  return mono_data
  
  
  
def get_mono_data(config,model):
    mono_data = mono_data_(config)
    
    if config.use_multiprocessing:
        if config.verbose:
            print(f"Using multiprocessing on {config.num_cores} processes")
        if __name__ == "__main__":
            ctx = mp.get_context('spawn')
            #mp.set_start_method("spawn",force=True)
            bt_data = ctx.Queue()
            model.share_memory()
            num_processes = config.num_cores
            NUM_TO_USE = len(mono_data)//num_processes
            mini_mono_data = [mono_data[i:i + NUM_TO_USE] for i in range(0, len(mono_data), NUM_TO_USE)]
            #print(f"Length of mini mono data {len(mini_mono_data)}.    Length of processes: {num_processes}")
            assert len(mini_mono_data) == num_processes, "Length of mini mono data and number of processes do not match."

            num_processes_range = [i for i in range(num_processes)]
            processes = []
            for rank,data_ in tqdm(zip(num_processes_range,mini_mono_data)):
                p = ctx.Process(target=do_job_pool, args=(bt_data,model,rank,tokenizers_for_parallel,config,data_))
                p.start()
                if config.verbose:
                    print(f"Bt data: {bt_data.get()}")
                sys.stdout.flush()
                processes.append(p)
            
            for p in processes:
                p.join()
                
            return bt_data
        
        
        
        #output = multiprocessing.Queue()
        #multiprocessing.set_start_method("spawn",force=True)
        #pool = mp.Pool(processes=config.num_cores)
        #bt_data  = [pool.apply(do_job, args=(data_,i,tokenizers_for_parallel,)) for i,data_ in enumerate(mono_data)]
        
        '''
        # Setup a list of processes that we want to run
        processes = [mp.Process(target=do_job, args=(5, output)) for x in range(config.num_cores)]
        if __name__ == "__main__":
            #pool = mp.Pool(processes=config.num_cores)
            with parallel_backend('loky'):
                bt_data = Parallel(n_jobs = config.num_cores, require='sharedmem')(delayed(do_job)(data_,i,tokenizers_for_parallel) for i,data_ in enumerate(mono_data))
        '''
    else:
        bt_data = [{'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']} for t in tqdm(mono_data)]
        return bt_data
  


def encode_input_str(config,text, target_lang, tokenizer, seq_len):
  
  target_lang_token = config.LANG_TOKEN_MAPPING[target_lang]

  # Tokenize and add special tokens
  input_ids = tokenizer.encode(
      text = str(target_lang_token) + str(text),
      return_tensors = 'pt',
      padding = 'max_length',
      truncation = config.truncation,
      max_length = seq_len)

  return input_ids[0]
  
def encode_target_str(config,text, tokenizer, seq_len):
  token_ids = tokenizer.encode(
      text = str(text),
      return_tensors = 'pt',
      padding = 'max_length',
      truncation = config.truncation,
      max_length = seq_len)
  
  return token_ids[0]

def format_translation_data(config,sample,tokenizer,seq_len):
  
  # sample is of the form  {'inputs':input,'targets':target,'src':src,'tgt':tgt}

  # Get the translations for the batch

  input_lang = sample['src']
  target_lang = sample['tgt']


  input_text = sample['inputs']
  target_text = sample['targets']

  if input_text is None or target_text is None:
    return None

  input_token_ids = encode_input_str(config,input_text, target_lang, tokenizer, seq_len)
  
  target_token_ids = encode_target_str(config,target_text, tokenizer, seq_len)

  return input_token_ids, target_token_ids

def transform_batch(config,batch,tokenizer,max_seq_len):
  inputs = []
  targets = []
  for sample in batch:
    formatted_data = format_translation_data(config,sample,tokenizer,max_seq_len)
    
    if formatted_data is None:
      continue
    
    input_ids, target_ids = formatted_data
    inputs.append(input_ids.unsqueeze(0))
    targets.append(target_ids.unsqueeze(0))
    
  batch_input_ids = torch.cat(inputs)
  batch_target_ids = torch.cat(targets)

  return batch_input_ids, batch_target_ids

def get_data_generator(config,dataset,tokenizer,max_seq_len,batch_size):
  random.shuffle(dataset)
 
  for i in range(0, len(dataset), batch_size):
    raw_batch = dataset[i:i+batch_size]
    yield transform_batch(config,raw_batch, tokenizer,max_seq_len)

def eval_model(config,tokenizer,model, gdataset, max_iters=8):
  test_generator = get_data_generator(config,gdataset,tokenizer,config.max_seq_len, config.batch_size)
  eval_losses = []
  for i, (input_batch, label_batch) in enumerate(test_generator):
 
    input_batch, label_batch = input_batch.to(config.device), label_batch.to(config.device)
    model_out = model.forward(
        input_ids = input_batch,
        labels = label_batch)
    
    if config.use_torch_data_parallel:
        loss = torch.mean(model_out.loss)
    else:
        loss = model_out.loss    
    
    eval_losses.append(loss.item())

  return np.mean(eval_losses)



def evaluate(config,tokenizer,model,test_dataset,src_lang=None,tgt_lang=None):
  if src_lang!=None and tgt_lang!=None:
    if config.verbose:
        with open(config.log,'a+') as fl:
          print(f"Getting evaluation set for source language -> {src_lang} and target language -> {tgt_lang}",file=fl)
    data = [t for t in test_dataset if t['src']==src_lang and t['tgt']==tgt_lang]
    
  else:
    data= [t for t in test_dataset]
    
  inp = [t['inputs'] for t in data]
  truth = [t['targets'] for t in data]
  tgt_lang_ = [t['tgt'] for t in data]

  seq_len__ = config.max_seq_len
 
  input_tokens = [encode_input_str(config,text = inp[i],target_lang = tgt_lang_[i],tokenizer = tokenizer,seq_len =seq_len__).unsqueeze(0).to(config.device) for i in range(len(inp))]
  
  if config.use_torch_data_parallel:
    output = [model.module.generate(input_ids, num_beams=config.num_beams, num_return_sequences=1,max_length=config.max_seq_len,min_length=config.min_seq_len) for input_ids in tqdm(input_tokens)]
  else:
    output = [model.generate(input_ids, num_beams=config.num_beams, num_return_sequences=1,max_length=config.max_seq_len,min_length=config.min_seq_len) for input_ids in tqdm(input_tokens)]
  output = [tokenizer.decode(out[0], skip_special_tokens=True) for out in tqdm(output)]
  
  df= pd.DataFrame({'predictions':output,'truth':truth,'inputs':inp})
  if config.now_on_bt and config.using_reconstruction:
    filename = f'{src_lang}_{tgt_lang}_bt_{config.bt_time}_rec.tsv'
  elif config.now_on_bt:
    filename = f'{src_lang}_{tgt_lang}_bt_{config.bt_time}.tsv'
  elif config.now_on_test:
    filename = f'{src_lang}_{tgt_lang}_TEST.tsv'
  else: 
    filename = f'{src_lang}_{tgt_lang}.tsv'
  df.to_csv(os.path.join(config.prediction_path,filename),sep='\t',index=False)
  try:
    spbleu = sacrebleu.corpus_bleu(output, [truth])
  except Exception:
    raise Exception(f'There is a problem with {src_lang}_{tgt_lang}. Truth is {truth} \n Input is {inp} ')
 
  
 
  return spbleu.score


def do_evaluation(config,tokenizer,model,test_dataset):
    LANGS = list(config.LANG_TOKEN_MAPPING.keys())
    if config.now_on_bt and config.using_reconstruction:
        s=f'---------------------------AFTER BACKTRANSLATION {config.bt_time} with RECONSTRUCTION---------------------------'+'\n'
    elif config.now_on_bt:
         s=f'---------------------------AFTER BACKTRANSLATION {config.bt_time}---------------------------'+'\n'
    elif config.now_on_test:
        s=f'---------------------------TESTING EVALUATION---------------------------'+'\n'
    else:
        s=f'---------------------------EVALUATION ON DEV---------------------------'+'\n'
    for i in range(len(LANGS)):
        for j in range(len(LANGS)):
            if LANGS[j]!=LANGS[i]:
                eval_bleu = evaluate(config,tokenizer,model,test_dataset,src_lang=LANGS[i],tgt_lang=LANGS[j])
                a = f'Bleu Score for {LANGS[i]} to {LANGS[j]} -> {eval_bleu} '+'\n'
                s+=a
               
                
    s+='------------------------------------------------------'     
    with open(os.path.join(config.homepath,'bleu_log.txt'), 'a+') as fl:
        print(s,file=fl)
    

def train(config,n_epochs,optimizer,tokenizer,train_dataset,dev_dataset,n_batches,model,save_with_bt=False):
  patience=0
  losses = []
  for epoch_idx in range(n_epochs):
    if epoch_idx>=config.state_dict_check['epoch']+1:
        st_time = time.time()
        avg_loss=0
        # Randomize data order
        data_generator = get_data_generator(config,train_dataset,tokenizer,config.max_seq_len, config.batch_size)
        optimizer.zero_grad()
        for batch_idx, (input_batch, label_batch) in tqdm(enumerate(data_generator), total=n_batches):
            if batch_idx >= config.state_dict_check['batch_idx']:

              input_batch,label_batch = input_batch.to(config.device),label_batch.to(config.device)
              # Forward pass
              model_out = model.forward(input_ids = input_batch, labels = label_batch)

              # Calculate loss and update weights
              if config.use_torch_data_parallel:
                loss = torch.mean(model_out.loss)
              else:
                loss = model_out.loss

              losses.append(loss.item())
              loss.backward()
              
              #Gradient accumulation
              if (batch_idx+1) % config.gradient_accumulation_batch == 0:
                optimizer.step()
                optimizer.zero_grad()
              # Print training update info
              if (batch_idx + 1) % config.print_freq == 0:
                avg_loss = np.mean(losses)
                losses=[]
                if config.verbose:
                    with open(config.log,'a+') as fl:
                      print('Epoch: {} | Step: {} | Avg. loss: {:.3f}'.format(epoch_idx+1, batch_idx+1, avg_loss),file=fl)
              
              if (batch_idx + 1) % config.checkpoint_freq == 0:
                test_loss = eval_model(config,tokenizer,model, dev_dataset)
                if config.best_loss-test_loss > config.best_loss_delta:
                  config.best_loss = test_loss
                  patience=0
                  if config.verbose:
                    with open(config.log,'a+') as fl:
                      print('Saving model with best test loss of {:.3f}'.format(test_loss),file=fl)
                  
                  if save_with_bt:
                    model_name = config.model_name.split('.')[0]+'_bt.pt'
                  else: 
                    model_name = config.model_name
                    
                  config.state_dict.update({'batch_idx': batch_idx,'epoch':epoch_idx,'bt_time':config.bt_time-1,'best_loss':config.best_loss})
                  if config.use_torch_data_parallel: 
                    config.state_dict['model_state_dict']=model.module.state_dict()
                    torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name))
                  else:
                    config.state_dict['model_state_dict']=model.state_dict()
                    torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name))
                else:
                  if config.verbose:
                    with open(config.log,'a+') as fl:
                      print(f'No improvement in loss {test_loss} over best loss {config.best_loss}. Not saving model checkpoint',file=fl)
                  patience+=1
              if patience >= config.patience:
                with open(config.log,'a+') as fl:
                  print("Stopping model training due to early stopping",file=fl)
                break 
        with open(config.log,'a+') as fl:
          print('Epoch: {} | Step: {} | Avg. loss: {:.3f} | Time taken: {} | Time: {}'.format(epoch_idx+1, batch_idx+1, avg_loss, beautify_time(time.time()-st_time),datetime.now()),file=fl)
        
        # Do this after epochs to get status of model at end of training----
        test_loss = eval_model(config,tokenizer,model, dev_dataset)
        if config.best_loss-test_loss > config.best_loss_delta:
          config.best_loss = test_loss
          patience=0
          if config.verbose:
            with open(config.log,'a+') as fl:
              print('Saving model with best test loss of {:.3f}'.format(test_loss),file=fl)
          
          if save_with_bt:
            model_name = config.model_name.split('.')[0]+'_bt.pt'
          else: 
            model_name = config.model_name
            
          config.state_dict.update({'batch_idx': n_batches-1,'epoch':n_epochs-1,'bt_time':config.bt_time-1,'best_loss':config.best_loss})
          if config.use_torch_data_parallel: 
            config.state_dict['model_state_dict']=model.module.state_dict()
            torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name))
          else:
            config.state_dict['model_state_dict']=model.state_dict()
            torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name))
        else:
          if config.verbose:
            with open(config.log,'a+') as fl:
              print(f'No improvement in loss {test_loss} over best loss {config.best_loss}. Not saving model checkpoint',file=fl)
          patience+=1
        #---------------------------------------------

 
  
def main(args):
    if not os.path.exists(args.homepath):
        raise Exception(f'HOMEPATH {args.homepath} does not exist!')
    config = Config(args)
    if not os.path.exists(config.prediction_path):
        os.makedirs(config.prediction_path)
    if not os.path.exists(config.bt_data_dir):
        os.makedirs(config.bt_data_dir)
    """# Load Tokenizer & Model"""

    tokenizer = AutoTokenizer.from_pretrained(config.model_repo)
    if config.use_multiprocessing:
        tokenizers_for_parallel = [AutoTokenizer.from_pretrained(config.model_repo) for i in range(config.num_cores)]

    model = AutoModelForSeq2SeqLM.from_pretrained(config.model_repo)

    if not os.path.exists(config.parallel_dir):
        raise Exception(f'Directory `{config.parallel_dir}` cannot be empty! It must contain the parallel files')
    
    train_dataset = make_dataset(config,'train')
    with open(config.log,'a+') as fl:
        print(f"Length of train dataset: {len(train_dataset)}",file=fl)

    dev_dataset = make_dataset(config,'eval')
    with open(config.log,'a+') as fl:
        print(f"Length of dev dataset: {len(dev_dataset)}",file=fl)

    """## Update tokenizer"""
    special_tokens_dict = {'additional_special_tokens': list(config.LANG_TOKEN_MAPPING.values())}
    tokenizer.add_special_tokens(special_tokens_dict)
    if config.use_multiprocessing:
        for tk in tokenizers_for_parallel:
            tk.add_special_tokens(special_tokens_dict)
    model.resize_token_embeddings(len(tokenizer))


    """# Train/Finetune MT5"""
    if os.path.exists(os.path.join(config.model_path_dir,config.model_name)):
        if config.verbose:
            with open(config.log,'a+') as fl:
                print("-----------Using model checkpoint-----------",file=fl)
        
        try:
            state_dict = torch.load(os.path.join(config.model_path_dir,config.model_name.split('.')[0]+'_bt.pt'))
        except Exception:
            with open(config.log,'a+') as fl:
                print('No mmt_translation_bt.pt present. Default to original mmt_translation.pt',file=fl)
            state_dict = torch.load(os.path.join(config.model_path_dir,config.model_name))
            
    
        # Note to self: Make this beter.
        config.state_dict_check['epoch']=state_dict['epoch']
        config.state_dict_check['bt_time']=state_dict['bt_time']
        config.state_dict_check['best_loss']=state_dict['best_loss']
        config.best_loss = config.state_dict_check['best_loss']
        config.state_dict_check['batch_idx']=state_dict['batch_idx']
        model.load_state_dict(state_dict['model_state_dict'])
      
        #Temp change
        config.state_dict_check['epoch']=-1
        config.state_dict_check['batch_idx']=0
        config.state_dict_check['bt_time']=-1
      

    #Using DataParallel
    if config.use_torch_data_parallel:
        model = torch.nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count())))
    model = model.to(config.device)
    #-----

    # Optimizer
    optimizer = Adafactor(model.parameters(), scale_parameter=False, relative_step=False, warmup_init=False, lr=config.lr)

    #Normal training
    n_batches = int(np.ceil(len(train_dataset) / config.batch_size))
    total_steps = config.n_epochs * n_batches
    n_warmup_steps = int(total_steps * 0.01)
                        
    #scheduler = get_linear_schedule_with_warmup(optimizer, n_warmup_steps, total_steps)
    #scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=config.lr, max_lr=0.001,cycle_momentum=False)

    train(config,config.n_epochs,optimizer,tokenizer,train_dataset,dev_dataset,n_batches,model)
    if config.verbose:
        with open(config.log,'a+') as fl:
            print('Evaluaton...',file=fl)
    do_evaluation(config,tokenizer,model,dev_dataset)
    config.state_dict_check['epoch']=-1
    config.state_dict_check['batch_idx']=0

    if config.do_backtranslation:
        #Backtranslation time
        config.now_on_bt=True
        with open(config.log,'a+') as fl:
            print('---------------Start of Backtranslation---------------',file=fl)
        for n_bt in range(config.NUM_BACKTRANSLATION_TIMES):
            if n_bt>=config.state_dict_check['bt_time']+1:
                with open(config.log,'a+') as fl:
                    print(f"Backtranslation {n_bt+1} of {config.NUM_BACKTRANSLATION_TIMES}--------------",file=fl)
                config.bt_time = n_bt+1
                save_bt_file_path =  os.path.join(config.bt_data_dir,'bt'+str(n_bt+1)+'.json')
                if not os.path.exists(save_bt_file_path):
                    mono_data = mono_data_(config)
                    start_time = time.time()
                    if config.use_multiprocessing:
                        if config.verbose:
                            with open(config.log,'a+') as fl:
                                print(f"Using multiprocessing on {config.num_cores} processes",file=fl)
                        if __name__ == "__main__":
                            model.share_memory()
                            with parallel_backend('loky'):
                                bt_data = Parallel(n_jobs = config.num_cores, require='sharedmem')(delayed(do_job)(data_,i,tokenizers_for_parallel) for i,data_ in tqdm(enumerate(mono_data)))    
                    else:
                        bt_data = [{'inputs':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'targets':t['inputs'],'src':t['tgt'],'tgt':t['src']} for t in tqdm(mono_data)]
                    with open(config.log,'a+') as fl:  
                        print(f'Time taken for backtranslation of data: {beautify_time(time.time()-start_time)}',file=fl)
                    with open(save_bt_file_path,'w') as fp:
                        json.dump(bt_data,fp)
                    
                else:
                    with open(save_bt_file_path,'r') as f:
                        bt_data = json.load(f)
                with open(config.log,'a+') as fl:
                    print('-'*15+'Printing 5 random BT Data'+'-'*15,file=fl)    
                ids_print = random.sample([i for i in range(len(bt_data))],5)
                with open(config.log,'a+') as fl:
                    for ids_print_ in ids_print:
                    
                        print(bt_data[ids_print_],file=fl)
                
                augmented_dataset = train_dataset + bt_data + mono_data_noise(config) #mono_data_noise adds denoising objective
                random.shuffle(augmented_dataset)
                
                with open(config.log,'a+') as fl:
                    print(f'New length of dataset: {len(augmented_dataset)}',file=fl)
                
                n_batches = int(np.ceil(len(augmented_dataset) / config.batch_size))
                total_steps = config.n_bt_epochs * n_batches
                n_warmup_steps = int(total_steps * 0.01)
                                    
                #scheduler = get_linear_schedule_with_warmup(optimizer, n_warmup_steps, total_steps)
                #scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=config.lr, max_lr=0.001,cycle_momentum=False)

                train(config,config.n_bt_epochs,optimizer,tokenizer,augmented_dataset,dev_dataset,n_batches,model,save_with_bt=True)
                
                if config.verbose:
                    with open(config.log,'a+') as fl:
                        print('Evaluaton...',file=fl)
                do_evaluation(config,tokenizer,model,dev_dataset)
                
                config.state_dict_check['epoch']=-1
                config.state_dict_check['batch_idx']=0
        with open(config.log,'a+') as fl:
            print('---------------End of Backtranslation---------------',file=fl)

    with open(config.log,'a+') as fl:
        print('---------------End of Training---------------',file=fl)
    config.now_on_bt=False
    config.now_on_test=True
    with open(config.log,'a+') as fl:
        print('Evaluating on test set',file=fl)
    test_dataset = make_dataset(config,'test')
    with open(config.log,'a+') as fl:
        print(f"Length of test dataset: {len(test_dataset)}",file=fl)
    do_evaluation(config,tokenizer,model,test_dataset)

    with open(config.log,'a+') as fl:
        print("ALL DONE",file=fl)


def load_params(args: dict) -> dict:
    """
    Load the parameters passed to `translate`
    """
    #if not os.path.exists(args['checkpoint']):
    #    raise Exception(f'Checkpoint file does not exist')

    params = {}
    model_repo = 'google/mt5-base'
    LANG_TOKEN_MAPPING = {
            'ig': '<ig>',
            'fon': '<fon>',
            'en': '<en>',
            'fr': '<fr>',
            'rw':'<rw>',
            'yo':'<yo>',
            'xh':'<xh>',
            'sw':'<sw>'
        }
    tokenizer = AutoTokenizer.from_pretrained(model_repo)
   
    model = AutoModelForSeq2SeqLM.from_pretrained(model_repo)


    """## Update tokenizer"""
    special_tokens_dict = {'additional_special_tokens': list(LANG_TOKEN_MAPPING.values())}
    tokenizer.add_special_tokens(special_tokens_dict)
    
    model.resize_token_embeddings(len(tokenizer))

    state_dict = torch.load(args['checkpoint'],map_location=args['device'])
   
    model.load_state_dict(state_dict['model_state_dict'])
      
    model = model.to(args['device'])

    #Load the model, load the tokenizer, max and min seq len
    params['model'] = model
    params['device'] = args['device']
    params['max_seq_len'] = args['max_seq_len'] if 'max_seq_len' in args else 50
    params['min_seq_len'] = args['min_seq_len'] if 'min_seq_len' in args else 2
    params['tokenizer'] = tokenizer
    params['num_beams'] = args['num_beams'] if 'num_beams' in args else 4
    params['lang_token'] = LANG_TOKEN_MAPPING
    params['truncation'] = args['truncation'] if 'truncation' in args else True

    return params

def encode_input_str_translate(params,text, target_lang, tokenizer, seq_len):
  
        target_lang_token = params['lang_token'][target_lang]

        # Tokenize and add special tokens
        input_ids = tokenizer.encode(
            text = str(target_lang_token) + str(text),
            return_tensors = 'pt',
            padding = 'max_length',
            truncation =  params['truncation'] ,
            max_length = seq_len)

        return input_ids[0]

def translate(
    params: dict,
    sentence: str,
    source_lang: str,
    target_lang: str
        ) -> str:
    """
    Given a sentence and its source and target sentences, this translates the sentence
    to the given target sentence. 
    """

    
    if source_lang!='' and target_lang!='':
        inp = [sentence]    
   
        input_tokens = [encode_input_str_translate(params,text = inp[i],target_lang = target_lang,tokenizer = params['tokenizer'],seq_len =params['max_seq_len']).unsqueeze(0).to(params['device']) for i in range(len(inp))]
        output = [params['model'].generate(input_ids, num_beams=params['num_beams'], num_return_sequences=1,max_length=params['max_seq_len'],min_length=params['min_seq_len']) for input_ids in input_tokens]
        output = [params['tokenizer'].decode(out[0], skip_special_tokens=True) for out in tqdm(output)]
  
        return output[0]
    
    else:
        return ''    
 
  



if __name__=="__main__":
    from argparse import ArgumentParser
    import json
    import os
    
    
    parser = ArgumentParser('MMTArica Experiments')

    parser.add_argument('-homepath', type=str, default=os.getcwd(),
        help="Homepath directory. Where all experiments are saved and all \
        necessary files/folders are saved. (default: current working directory)")
    
    parser.add_argument('--prediction_path', type=str, default='./predictions',
        help='directory path to save predictions (default: %(default)s)')
    
    parser.add_argument('--model_name', type=str, default='mmt_translation',
        help='Name of model (default: %(default)s)')

    parser.add_argument('--bt_data_dir', type=str, default='btData',
        help='Directory to save back-translation files (default: %(default)s)')   

    parser.add_argument('--parallel_dir', type=str, default='parallel',
        help='name of directory where parallel corpora is saved') 

    parser.add_argument('--mono_dir', type=str, default='mono',
        help='name of directory where monolingual files are saved (default: %(default)s)')                    
    
    parser.add_argument('--log', type=str, default='train.log',
        help='name of file to log experiments (default: %(default)s)')

    parser.add_argument('--mono_data_limit', type=int, default=300,
        help='limit of monolingual sentences to use for training (default: %(default)s)')

    parser.add_argument('--mono_data_for_noise_limit', type=int, default=50,
        help='limit of monolingual sentences to use for noise (default: %(default)s)')

    parser.add_argument('--n_epochs', type=int, default=10,
        help='number of training epochs (default: %(default)s)')            
    
    parser.add_argument('--n_bt_epochs', type=int, default=3,
        help='number of backtranslation epochs (default: %(default)s)')

    parser.add_argument('--batch_size', type=int, default=64,
        help='batch size (default: %(default)s)')

    parser.add_argument('--max_seq_len', type=int, default=50,
        help='maximum length of sentence. All sentences beyond this length will be skipped. (default: %(default)s)')

    parser.add_argument('--min_seq_len', type=int, default=2,
        help='mnimum length of sentence. All sentences beyond this length will be skipped. (default: %(default)s)')

    parser.add_argument('--checkpoint_freq', type=int, default=10_000,
    help='maximum length of sentence. All sentences beyond this length will be skipped. (default: %(default)s)')

    parser.add_argument('--lr', type=int, default=1e-4,
    help='learning rate. (default: %(default)s)')

    parser.add_argument('--print_freq', type=int, default=5_000,
    help='frequency at which to print to log. (default: %(default)s)') 

    parser.add_argument('--use_multiprocessing', type=bool, default=False,
    help='whether or not to use multiprocessing. (default: %(default)s)') 

    parser.add_argument('--num_pretrain_steps', type=int, default=20,
    help='number of pretrain steps. (default: %(default)s)') 

    parser.add_argument('--num_backtranslation_steps', type=int, default=5,
    help='number of pretrain steps. (default: %(default)s)') 

    parser.add_argument('--do_backtranslation', type=bool, default=True,
    help='whether or not to do backtranslation during training. (default: %(default)s)')

    parser.add_argument('--use_reconstruction', type=bool, default=True,
    help='whether or not to use reconstruction during training. (default: %(default)s)')

    parser.add_argument('--use_torch_data_parallel', type=bool, default=False,
    help='whether or not to use torch data parallelism. (default: %(default)s)')

    parser.add_argument('--gradient_accumulation_batch', type=int, default=4096//64,
    help='batch size for gradient accumulation. (default: %(default)s)')

    parser.add_argument('--num_beams', type=int, default=4,
    help='number of beams to use for inference. (default: %(default)s)')

    parser.add_argument('--patience', type=int, default=15_000_000,
    help='patience for early stopping. (default: %(default)s)')

    parser.add_argument('--drop_probability', type=float, default=0.2,
    help='drop probability for reconstruction. (default: %(default)s)')

    parser.add_argument('--dropout', type=float, default=0.1,
    help='dropout probability. (default: %(default)s)')

    parser.add_argument('--num_swaps', type=int, default=3,
    help='number of word swaps to perform during reconstruction. (default: %(default)s)')

    parser.add_argument('--verbose', type=bool, default=True,
    help='whether or not to print information during experiments. (default: %(default)s)')

    args = parser.parse_args() 
    

    main(args)