File size: 40,017 Bytes
b13cebd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 |
from locale import strcoll
from datasets import load_dataset
import numpy as np
import torch
from torch import optim
from torch.nn import functional as F
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.optimization import Adafactor
from transformers import get_linear_schedule_with_warmup
from tqdm.notebook import tqdm
import random
import sacrebleu
import os
import pandas as pd
from sklearn.model_selection import train_test_split
import torch.multiprocessing as mp
from torch.multiprocessing import Process, Queue
from joblib import Parallel, delayed,parallel_backend
import sys
from functools import partial
import json
import time
import numpy as np
from datetime import datetime
class Config():
def __init__(self,args) -> None:
self.homepath = args.homepath
self.prediction_path = os.path.join(args.homepath,args.prediction_path)
# Use 'google/mt5-small' for non-pro cloab users
self.model_repo = 'google/mt5-base'
self.model_path_dir = args.homepath
self.model_name = f'{args.model_name}.pt'
self.bt_data_dir = os.path.join(args.homepath,args.bt_data_dir)
#Data part
self.parallel_dir= os.path.join(args.homepath,args.parallel_dir)
self.mono_dir= os.path.join(args.homepath,args.mono_dir)
self.log = os.path.join(args.homepath,args.log)
self.mono_data_limit = args.mono_data_limit
self.mono_data_for_noise_limit=args.mono_data_for_noise_limit
#Training params
self.n_epochs = args.n_epochs
self.n_bt_epochs=args.n_bt_epochs
self.batch_size = args.batch_size
self.max_seq_len = args.max_seq_len
self.min_seq_len = args.min_seq_len
self.checkpoint_freq = args.checkpoint_freq
self.lr = 1e-4
self.print_freq = args.print_freq
self.use_multiprocessing = args.use_multiprocessing
self.num_cores = mp.cpu_count()
self.NUM_PRETRAIN = args.num_pretrain_steps
self.NUM_BACKTRANSLATION_TIMES =args.num_backtranslation_steps
self.do_backtranslation=args.do_backtranslation
self.now_on_bt=False
self.bt_time=0
self.using_reconstruction= args.use_reconstruction
self.num_return_sequences_bt=2
self.use_torch_data_parallel = args.use_torch_data_parallel
self.gradient_accumulation_batch = args.gradient_accumulation_batch
self.num_beams = args.num_beams
self.best_loss = 1000
self.best_loss_delta = 0.00000001
self.patience=args.patience
self.L2=0.0000001
self.dropout=args.dropout
self.drop_prob=args.drop_probability
self.num_swaps=args.num_swaps
self.verbose=args.verbose
self.now_on_test=False
#Initialization of state dict which will be saved during training
self.state_dict = {'batch_idx': 0,'epoch':0,'bt_time':self.bt_time,'best_loss':self.best_loss}
self.state_dict_check = {'batch_idx': 0,'epoch':0,'bt_time':self.bt_time,'best_loss':self.best_loss} #this is for tracing training after abrupt end!
self.device = torch.device('cuda' if True and torch.cuda.is_available() else 'cpu')
#We will be leveraging parallel and monolingual data for each of these languages.
#parallel data will be saved in a central 'parallel_data 'folder as 'src'_'tg'_parallel.tsv
#monolingual data will be saved in another folder called 'monolingual_data' as 'lg'_mono.tsv
#Each tsv file is of the form "input", "output"
self.LANG_TOKEN_MAPPING = {
'ig': '<ig>',
'fon': '<fon>',
'en': '<en>',
'fr': '<fr>',
'rw':'<rw>',
'yo':'<yo>',
'xh':'<xh>',
'sw':'<sw>'
}
self.truncation=True
def beautify_time(time):
hr = time//(3600)
mins = (time-(hr*3600))//60
rest = time -(hr*3600) - (mins*60)
#DARIA's implementation!
sp = ""
if hr >=1:
sp += '{} hours'.format(hr)
if mins >=1:
sp += ' {} mins'.format(mins)
if rest >=1:
sp += ' {} seconds'.format(rest)
return sp
def word_delete(x,config):
noise=[]
words = x.split(' ')
if len(words) == 1:
return x
for w in words:
a= np.random.choice([0,1], 1, p=[config.drop_prob, 1-config.drop_prob])
if a[0]==1: #It means don't delete
noise.append(w)
#if you end up deleting all words, just return a random word
if len(noise) == 0:
rand_int = random.randint(0, len(words)-1)
return [words[rand_int]]
return ' '.join(noise)
def swap_word(new_words):
random_idx_1 = random.randint(0, len(new_words)-1)
random_idx_2 = random_idx_1
counter = 0
while random_idx_2 == random_idx_1:
random_idx_2 = random.randint(0, len(new_words)-1)
counter += 1
if counter > 3:
return new_words
new_words[random_idx_1], new_words[random_idx_2] = new_words[random_idx_2], new_words[random_idx_1]
return new_words
def random_swap(words, n):
words = words.split()
new_words = words.copy()
for _ in range(n):
new_words = swap_word(new_words)
sentence = ' '.join(new_words)
return sentence
def get_dict(input,target,src,tgt):
inp = [i for i in input]
target_ = [ i for i in target]
s= [src for i in range(len(inp))]
t = [tgt for i in range(len(target_))]
return [{'inputs':inp_,'targets':target__,'src':s_,'tgt':t_} for inp_,target__,s_,t_ in zip(inp,target_,s,t)]
def get_dict_mono(input,src,config):
index = [i for i in range(len(input))]
ids = random.sample(index,config.mono_data_limit)
inp = [input[i] for i in ids]
s= [src for i in range(len(inp))]
data=[]
for lang in config.LANG_TOKEN_MAPPING.keys():
if lang!=src and lang not in ['en','fr']:
data.extend([{'inputs':inp_,'src':s_,'tgt':lang} for inp_,s_ in zip(inp,s)])
return data
def get_dict_mono_noise(input,src,config):
index = [i for i in range(len(input))]
ids = random.sample(index,config.mono_data_for_noise_limit)
inp = [input[i] for i in ids]
noised = [word_delete(random_swap(str(x),config.num_swaps),config) for x in inp]
s= [src for i in range(len(inp))]
data=[]
data.extend([{'inputs':noise_,'targets':inp_,'src':s_,'tgt':s_} for inp_,s_,noise_ in zip(inp,s,noised)])
return data
def compress(input,target,src,tgt):
return {'inputs':input,'targets':target,'src':src,'tgt':tgt}
def make_dataset(config,mode):
if mode!='eval' and mode!='train' and mode!='test':
raise Exception('mode is either train or eval or test!')
else:
files = [f.name for f in os.scandir(config.parallel_dir) ]
files = [f for f in files if f.split('.')[-1]=='tsv' and f.split('.tsv')[0].endswith(mode) and len(f.split('_'))>2 ]
data = [(f_.split('_')[0],f_.split('_')[1],pd.read_csv(os.path.join(config.parallel_dir,f_), sep="\t")) for f_ in files]
dict_ = [get_dict(df['input'],df['target'],src,tgt) for src,tgt,df in data]
return [item for sublist in dict_ for item in sublist]
def get_model_translation(config,model,tokenizer,sentence,tgt):
if config.use_torch_data_parallel:
max_seq_len_ = model.module.config.max_length
else:
max_seq_len_ = model.config.max_length
input_ids = encode_input_str(config,text = sentence,target_lang = tgt,tokenizer = tokenizer,seq_len = max_seq_len_).unsqueeze(0).to(config.device)
if config.use_torch_data_parallel:
out = model.module.generate(input_ids,num_beams=3,do_sample=True, num_return_sequences=config.num_return_sequences_bt,max_length=config.max_seq_len,min_length=config.min_seq_len)
else:
out = model.generate(input_ids,num_beams=3, do_sample=True,num_return_sequences=config.num_return_sequences_bt,max_length=config.max_seq_len,min_length=config.min_seq_len)
out_id = [i for i in range(config.num_return_sequences_bt)]
id_ = random.sample(out_id,1)
return tokenizer.decode(out[id_][0], skip_special_tokens=True)
def do_job(t,id_,tokenizers):
tokenizer = tokenizers[id_ % len(tokenizers)]
#We flip the input as target and vice versa in order to have target-side backtranslation (where source side is synthetic).
return {'inputs':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'targets':t['inputs'],'src':t['tgt'],'tgt':t['src']}
#return {'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']}
def do_job_pmap(t):
#tokenizer = tokenizers[id_ % len(tokenizers)]
return {'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']}
def do_job_pool(bt_data,model,id_,tokenizers,config,mono_data):
tokenizer = tokenizers[id_]
if config.verbose:
print(f"Mono data inside job pool: {mono_data}")
sys.stdout.flush()
res = [{'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']} for t in mono_data]
bt_data.put(res)
return None
def mono_data_(config):
#Find and prepare all the mono data in the directory
files_ = [f.name for f in os.scandir(config.mono_dir) ]
files = [f for f in files_ if f.endswith('tsv') and f.split('.tsv')[0].endswith('mono')]
if config.verbose:
print("Generating data for back translation")
print(f"Files found in mono dir: {files}")
data = [(f_.split('_')[0],pd.read_csv(os.path.join(config.mono_dir,f_), sep="\t")) for f_ in files]
dict_ = [get_dict_mono(df['input'],src,config) for src,df in data]
mono_data = [item for sublist in dict_ for item in sublist]
return mono_data
def mono_data_noise(config):
#Find and prepare all the mono data in the directory
files_ = [f.name for f in os.scandir(config.mono_dir) ]
files = [f for f in files_ if f.endswith('tsv') and f.split('.tsv')[0].endswith('mono')]
if config.verbose:
print("Generating data for back translation")
print(f"Files found in mono dir: {files}")
data = [(f_.split('_')[0],pd.read_csv(os.path.join(config.mono_dir,f_), sep="\t")) for f_ in files]
dict_ = [get_dict_mono_noise(df['input'],src,config) for src,df in data]
mono_data = [item for sublist in dict_ for item in sublist]
return mono_data
def get_mono_data(config,model):
mono_data = mono_data_(config)
if config.use_multiprocessing:
if config.verbose:
print(f"Using multiprocessing on {config.num_cores} processes")
if __name__ == "__main__":
ctx = mp.get_context('spawn')
#mp.set_start_method("spawn",force=True)
bt_data = ctx.Queue()
model.share_memory()
num_processes = config.num_cores
NUM_TO_USE = len(mono_data)//num_processes
mini_mono_data = [mono_data[i:i + NUM_TO_USE] for i in range(0, len(mono_data), NUM_TO_USE)]
#print(f"Length of mini mono data {len(mini_mono_data)}. Length of processes: {num_processes}")
assert len(mini_mono_data) == num_processes, "Length of mini mono data and number of processes do not match."
num_processes_range = [i for i in range(num_processes)]
processes = []
for rank,data_ in tqdm(zip(num_processes_range,mini_mono_data)):
p = ctx.Process(target=do_job_pool, args=(bt_data,model,rank,tokenizers_for_parallel,config,data_))
p.start()
if config.verbose:
print(f"Bt data: {bt_data.get()}")
sys.stdout.flush()
processes.append(p)
for p in processes:
p.join()
return bt_data
#output = multiprocessing.Queue()
#multiprocessing.set_start_method("spawn",force=True)
#pool = mp.Pool(processes=config.num_cores)
#bt_data = [pool.apply(do_job, args=(data_,i,tokenizers_for_parallel,)) for i,data_ in enumerate(mono_data)]
'''
# Setup a list of processes that we want to run
processes = [mp.Process(target=do_job, args=(5, output)) for x in range(config.num_cores)]
if __name__ == "__main__":
#pool = mp.Pool(processes=config.num_cores)
with parallel_backend('loky'):
bt_data = Parallel(n_jobs = config.num_cores, require='sharedmem')(delayed(do_job)(data_,i,tokenizers_for_parallel) for i,data_ in enumerate(mono_data))
'''
else:
bt_data = [{'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']} for t in tqdm(mono_data)]
return bt_data
def encode_input_str(config,text, target_lang, tokenizer, seq_len):
target_lang_token = config.LANG_TOKEN_MAPPING[target_lang]
# Tokenize and add special tokens
input_ids = tokenizer.encode(
text = str(target_lang_token) + str(text),
return_tensors = 'pt',
padding = 'max_length',
truncation = config.truncation,
max_length = seq_len)
return input_ids[0]
def encode_target_str(config,text, tokenizer, seq_len):
token_ids = tokenizer.encode(
text = str(text),
return_tensors = 'pt',
padding = 'max_length',
truncation = config.truncation,
max_length = seq_len)
return token_ids[0]
def format_translation_data(config,sample,tokenizer,seq_len):
# sample is of the form {'inputs':input,'targets':target,'src':src,'tgt':tgt}
# Get the translations for the batch
input_lang = sample['src']
target_lang = sample['tgt']
input_text = sample['inputs']
target_text = sample['targets']
if input_text is None or target_text is None:
return None
input_token_ids = encode_input_str(config,input_text, target_lang, tokenizer, seq_len)
target_token_ids = encode_target_str(config,target_text, tokenizer, seq_len)
return input_token_ids, target_token_ids
def transform_batch(config,batch,tokenizer,max_seq_len):
inputs = []
targets = []
for sample in batch:
formatted_data = format_translation_data(config,sample,tokenizer,max_seq_len)
if formatted_data is None:
continue
input_ids, target_ids = formatted_data
inputs.append(input_ids.unsqueeze(0))
targets.append(target_ids.unsqueeze(0))
batch_input_ids = torch.cat(inputs)
batch_target_ids = torch.cat(targets)
return batch_input_ids, batch_target_ids
def get_data_generator(config,dataset,tokenizer,max_seq_len,batch_size):
random.shuffle(dataset)
for i in range(0, len(dataset), batch_size):
raw_batch = dataset[i:i+batch_size]
yield transform_batch(config,raw_batch, tokenizer,max_seq_len)
def eval_model(config,tokenizer,model, gdataset, max_iters=8):
test_generator = get_data_generator(config,gdataset,tokenizer,config.max_seq_len, config.batch_size)
eval_losses = []
for i, (input_batch, label_batch) in enumerate(test_generator):
input_batch, label_batch = input_batch.to(config.device), label_batch.to(config.device)
model_out = model.forward(
input_ids = input_batch,
labels = label_batch)
if config.use_torch_data_parallel:
loss = torch.mean(model_out.loss)
else:
loss = model_out.loss
eval_losses.append(loss.item())
return np.mean(eval_losses)
def evaluate(config,tokenizer,model,test_dataset,src_lang=None,tgt_lang=None):
if src_lang!=None and tgt_lang!=None:
if config.verbose:
with open(config.log,'a+') as fl:
print(f"Getting evaluation set for source language -> {src_lang} and target language -> {tgt_lang}",file=fl)
data = [t for t in test_dataset if t['src']==src_lang and t['tgt']==tgt_lang]
else:
data= [t for t in test_dataset]
inp = [t['inputs'] for t in data]
truth = [t['targets'] for t in data]
tgt_lang_ = [t['tgt'] for t in data]
seq_len__ = config.max_seq_len
input_tokens = [encode_input_str(config,text = inp[i],target_lang = tgt_lang_[i],tokenizer = tokenizer,seq_len =seq_len__).unsqueeze(0).to(config.device) for i in range(len(inp))]
if config.use_torch_data_parallel:
output = [model.module.generate(input_ids, num_beams=config.num_beams, num_return_sequences=1,max_length=config.max_seq_len,min_length=config.min_seq_len) for input_ids in tqdm(input_tokens)]
else:
output = [model.generate(input_ids, num_beams=config.num_beams, num_return_sequences=1,max_length=config.max_seq_len,min_length=config.min_seq_len) for input_ids in tqdm(input_tokens)]
output = [tokenizer.decode(out[0], skip_special_tokens=True) for out in tqdm(output)]
df= pd.DataFrame({'predictions':output,'truth':truth,'inputs':inp})
if config.now_on_bt and config.using_reconstruction:
filename = f'{src_lang}_{tgt_lang}_bt_{config.bt_time}_rec.tsv'
elif config.now_on_bt:
filename = f'{src_lang}_{tgt_lang}_bt_{config.bt_time}.tsv'
elif config.now_on_test:
filename = f'{src_lang}_{tgt_lang}_TEST.tsv'
else:
filename = f'{src_lang}_{tgt_lang}.tsv'
df.to_csv(os.path.join(config.prediction_path,filename),sep='\t',index=False)
try:
spbleu = sacrebleu.corpus_bleu(output, [truth])
except Exception:
raise Exception(f'There is a problem with {src_lang}_{tgt_lang}. Truth is {truth} \n Input is {inp} ')
return spbleu.score
def do_evaluation(config,tokenizer,model,test_dataset):
LANGS = list(config.LANG_TOKEN_MAPPING.keys())
if config.now_on_bt and config.using_reconstruction:
s=f'---------------------------AFTER BACKTRANSLATION {config.bt_time} with RECONSTRUCTION---------------------------'+'\n'
elif config.now_on_bt:
s=f'---------------------------AFTER BACKTRANSLATION {config.bt_time}---------------------------'+'\n'
elif config.now_on_test:
s=f'---------------------------TESTING EVALUATION---------------------------'+'\n'
else:
s=f'---------------------------EVALUATION ON DEV---------------------------'+'\n'
for i in range(len(LANGS)):
for j in range(len(LANGS)):
if LANGS[j]!=LANGS[i]:
eval_bleu = evaluate(config,tokenizer,model,test_dataset,src_lang=LANGS[i],tgt_lang=LANGS[j])
a = f'Bleu Score for {LANGS[i]} to {LANGS[j]} -> {eval_bleu} '+'\n'
s+=a
s+='------------------------------------------------------'
with open(os.path.join(config.homepath,'bleu_log.txt'), 'a+') as fl:
print(s,file=fl)
def train(config,n_epochs,optimizer,tokenizer,train_dataset,dev_dataset,n_batches,model,save_with_bt=False):
patience=0
losses = []
for epoch_idx in range(n_epochs):
if epoch_idx>=config.state_dict_check['epoch']+1:
st_time = time.time()
avg_loss=0
# Randomize data order
data_generator = get_data_generator(config,train_dataset,tokenizer,config.max_seq_len, config.batch_size)
optimizer.zero_grad()
for batch_idx, (input_batch, label_batch) in tqdm(enumerate(data_generator), total=n_batches):
if batch_idx >= config.state_dict_check['batch_idx']:
input_batch,label_batch = input_batch.to(config.device),label_batch.to(config.device)
# Forward pass
model_out = model.forward(input_ids = input_batch, labels = label_batch)
# Calculate loss and update weights
if config.use_torch_data_parallel:
loss = torch.mean(model_out.loss)
else:
loss = model_out.loss
losses.append(loss.item())
loss.backward()
#Gradient accumulation
if (batch_idx+1) % config.gradient_accumulation_batch == 0:
optimizer.step()
optimizer.zero_grad()
# Print training update info
if (batch_idx + 1) % config.print_freq == 0:
avg_loss = np.mean(losses)
losses=[]
if config.verbose:
with open(config.log,'a+') as fl:
print('Epoch: {} | Step: {} | Avg. loss: {:.3f}'.format(epoch_idx+1, batch_idx+1, avg_loss),file=fl)
if (batch_idx + 1) % config.checkpoint_freq == 0:
test_loss = eval_model(config,tokenizer,model, dev_dataset)
if config.best_loss-test_loss > config.best_loss_delta:
config.best_loss = test_loss
patience=0
if config.verbose:
with open(config.log,'a+') as fl:
print('Saving model with best test loss of {:.3f}'.format(test_loss),file=fl)
if save_with_bt:
model_name = config.model_name.split('.')[0]+'_bt.pt'
else:
model_name = config.model_name
config.state_dict.update({'batch_idx': batch_idx,'epoch':epoch_idx,'bt_time':config.bt_time-1,'best_loss':config.best_loss})
if config.use_torch_data_parallel:
config.state_dict['model_state_dict']=model.module.state_dict()
torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name))
else:
config.state_dict['model_state_dict']=model.state_dict()
torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name))
else:
if config.verbose:
with open(config.log,'a+') as fl:
print(f'No improvement in loss {test_loss} over best loss {config.best_loss}. Not saving model checkpoint',file=fl)
patience+=1
if patience >= config.patience:
with open(config.log,'a+') as fl:
print("Stopping model training due to early stopping",file=fl)
break
with open(config.log,'a+') as fl:
print('Epoch: {} | Step: {} | Avg. loss: {:.3f} | Time taken: {} | Time: {}'.format(epoch_idx+1, batch_idx+1, avg_loss, beautify_time(time.time()-st_time),datetime.now()),file=fl)
# Do this after epochs to get status of model at end of training----
test_loss = eval_model(config,tokenizer,model, dev_dataset)
if config.best_loss-test_loss > config.best_loss_delta:
config.best_loss = test_loss
patience=0
if config.verbose:
with open(config.log,'a+') as fl:
print('Saving model with best test loss of {:.3f}'.format(test_loss),file=fl)
if save_with_bt:
model_name = config.model_name.split('.')[0]+'_bt.pt'
else:
model_name = config.model_name
config.state_dict.update({'batch_idx': n_batches-1,'epoch':n_epochs-1,'bt_time':config.bt_time-1,'best_loss':config.best_loss})
if config.use_torch_data_parallel:
config.state_dict['model_state_dict']=model.module.state_dict()
torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name))
else:
config.state_dict['model_state_dict']=model.state_dict()
torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name))
else:
if config.verbose:
with open(config.log,'a+') as fl:
print(f'No improvement in loss {test_loss} over best loss {config.best_loss}. Not saving model checkpoint',file=fl)
patience+=1
#---------------------------------------------
def main(args):
if not os.path.exists(args.homepath):
raise Exception(f'HOMEPATH {args.homepath} does not exist!')
config = Config(args)
if not os.path.exists(config.prediction_path):
os.makedirs(config.prediction_path)
if not os.path.exists(config.bt_data_dir):
os.makedirs(config.bt_data_dir)
"""# Load Tokenizer & Model"""
tokenizer = AutoTokenizer.from_pretrained(config.model_repo)
if config.use_multiprocessing:
tokenizers_for_parallel = [AutoTokenizer.from_pretrained(config.model_repo) for i in range(config.num_cores)]
model = AutoModelForSeq2SeqLM.from_pretrained(config.model_repo)
if not os.path.exists(config.parallel_dir):
raise Exception(f'Directory `{config.parallel_dir}` cannot be empty! It must contain the parallel files')
train_dataset = make_dataset(config,'train')
with open(config.log,'a+') as fl:
print(f"Length of train dataset: {len(train_dataset)}",file=fl)
dev_dataset = make_dataset(config,'eval')
with open(config.log,'a+') as fl:
print(f"Length of dev dataset: {len(dev_dataset)}",file=fl)
"""## Update tokenizer"""
special_tokens_dict = {'additional_special_tokens': list(config.LANG_TOKEN_MAPPING.values())}
tokenizer.add_special_tokens(special_tokens_dict)
if config.use_multiprocessing:
for tk in tokenizers_for_parallel:
tk.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
"""# Train/Finetune MT5"""
if os.path.exists(os.path.join(config.model_path_dir,config.model_name)):
if config.verbose:
with open(config.log,'a+') as fl:
print("-----------Using model checkpoint-----------",file=fl)
try:
state_dict = torch.load(os.path.join(config.model_path_dir,config.model_name.split('.')[0]+'_bt.pt'))
except Exception:
with open(config.log,'a+') as fl:
print('No mmt_translation_bt.pt present. Default to original mmt_translation.pt',file=fl)
state_dict = torch.load(os.path.join(config.model_path_dir,config.model_name))
# Note to self: Make this beter.
config.state_dict_check['epoch']=state_dict['epoch']
config.state_dict_check['bt_time']=state_dict['bt_time']
config.state_dict_check['best_loss']=state_dict['best_loss']
config.best_loss = config.state_dict_check['best_loss']
config.state_dict_check['batch_idx']=state_dict['batch_idx']
model.load_state_dict(state_dict['model_state_dict'])
#Temp change
config.state_dict_check['epoch']=-1
config.state_dict_check['batch_idx']=0
config.state_dict_check['bt_time']=-1
#Using DataParallel
if config.use_torch_data_parallel:
model = torch.nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count())))
model = model.to(config.device)
#-----
# Optimizer
optimizer = Adafactor(model.parameters(), scale_parameter=False, relative_step=False, warmup_init=False, lr=config.lr)
#Normal training
n_batches = int(np.ceil(len(train_dataset) / config.batch_size))
total_steps = config.n_epochs * n_batches
n_warmup_steps = int(total_steps * 0.01)
#scheduler = get_linear_schedule_with_warmup(optimizer, n_warmup_steps, total_steps)
#scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=config.lr, max_lr=0.001,cycle_momentum=False)
train(config,config.n_epochs,optimizer,tokenizer,train_dataset,dev_dataset,n_batches,model)
if config.verbose:
with open(config.log,'a+') as fl:
print('Evaluaton...',file=fl)
do_evaluation(config,tokenizer,model,dev_dataset)
config.state_dict_check['epoch']=-1
config.state_dict_check['batch_idx']=0
if config.do_backtranslation:
#Backtranslation time
config.now_on_bt=True
with open(config.log,'a+') as fl:
print('---------------Start of Backtranslation---------------',file=fl)
for n_bt in range(config.NUM_BACKTRANSLATION_TIMES):
if n_bt>=config.state_dict_check['bt_time']+1:
with open(config.log,'a+') as fl:
print(f"Backtranslation {n_bt+1} of {config.NUM_BACKTRANSLATION_TIMES}--------------",file=fl)
config.bt_time = n_bt+1
save_bt_file_path = os.path.join(config.bt_data_dir,'bt'+str(n_bt+1)+'.json')
if not os.path.exists(save_bt_file_path):
mono_data = mono_data_(config)
start_time = time.time()
if config.use_multiprocessing:
if config.verbose:
with open(config.log,'a+') as fl:
print(f"Using multiprocessing on {config.num_cores} processes",file=fl)
if __name__ == "__main__":
model.share_memory()
with parallel_backend('loky'):
bt_data = Parallel(n_jobs = config.num_cores, require='sharedmem')(delayed(do_job)(data_,i,tokenizers_for_parallel) for i,data_ in tqdm(enumerate(mono_data)))
else:
bt_data = [{'inputs':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'targets':t['inputs'],'src':t['tgt'],'tgt':t['src']} for t in tqdm(mono_data)]
with open(config.log,'a+') as fl:
print(f'Time taken for backtranslation of data: {beautify_time(time.time()-start_time)}',file=fl)
with open(save_bt_file_path,'w') as fp:
json.dump(bt_data,fp)
else:
with open(save_bt_file_path,'r') as f:
bt_data = json.load(f)
with open(config.log,'a+') as fl:
print('-'*15+'Printing 5 random BT Data'+'-'*15,file=fl)
ids_print = random.sample([i for i in range(len(bt_data))],5)
with open(config.log,'a+') as fl:
for ids_print_ in ids_print:
print(bt_data[ids_print_],file=fl)
augmented_dataset = train_dataset + bt_data + mono_data_noise(config) #mono_data_noise adds denoising objective
random.shuffle(augmented_dataset)
with open(config.log,'a+') as fl:
print(f'New length of dataset: {len(augmented_dataset)}',file=fl)
n_batches = int(np.ceil(len(augmented_dataset) / config.batch_size))
total_steps = config.n_bt_epochs * n_batches
n_warmup_steps = int(total_steps * 0.01)
#scheduler = get_linear_schedule_with_warmup(optimizer, n_warmup_steps, total_steps)
#scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=config.lr, max_lr=0.001,cycle_momentum=False)
train(config,config.n_bt_epochs,optimizer,tokenizer,augmented_dataset,dev_dataset,n_batches,model,save_with_bt=True)
if config.verbose:
with open(config.log,'a+') as fl:
print('Evaluaton...',file=fl)
do_evaluation(config,tokenizer,model,dev_dataset)
config.state_dict_check['epoch']=-1
config.state_dict_check['batch_idx']=0
with open(config.log,'a+') as fl:
print('---------------End of Backtranslation---------------',file=fl)
with open(config.log,'a+') as fl:
print('---------------End of Training---------------',file=fl)
config.now_on_bt=False
config.now_on_test=True
with open(config.log,'a+') as fl:
print('Evaluating on test set',file=fl)
test_dataset = make_dataset(config,'test')
with open(config.log,'a+') as fl:
print(f"Length of test dataset: {len(test_dataset)}",file=fl)
do_evaluation(config,tokenizer,model,test_dataset)
with open(config.log,'a+') as fl:
print("ALL DONE",file=fl)
def load_params(args: dict) -> dict:
"""
Load the parameters passed to `translate`
"""
#if not os.path.exists(args['checkpoint']):
# raise Exception(f'Checkpoint file does not exist')
params = {}
model_repo = 'google/mt5-base'
LANG_TOKEN_MAPPING = {
'ig': '<ig>',
'fon': '<fon>',
'en': '<en>',
'fr': '<fr>',
'rw':'<rw>',
'yo':'<yo>',
'xh':'<xh>',
'sw':'<sw>'
}
tokenizer = AutoTokenizer.from_pretrained(model_repo)
model = AutoModelForSeq2SeqLM.from_pretrained(model_repo)
"""## Update tokenizer"""
special_tokens_dict = {'additional_special_tokens': list(LANG_TOKEN_MAPPING.values())}
tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
state_dict = torch.load(args['checkpoint'],map_location=args['device'])
model.load_state_dict(state_dict['model_state_dict'])
model = model.to(args['device'])
#Load the model, load the tokenizer, max and min seq len
params['model'] = model
params['device'] = args['device']
params['max_seq_len'] = args['max_seq_len'] if 'max_seq_len' in args else 50
params['min_seq_len'] = args['min_seq_len'] if 'min_seq_len' in args else 2
params['tokenizer'] = tokenizer
params['num_beams'] = args['num_beams'] if 'num_beams' in args else 4
params['lang_token'] = LANG_TOKEN_MAPPING
params['truncation'] = args['truncation'] if 'truncation' in args else True
return params
def encode_input_str_translate(params,text, target_lang, tokenizer, seq_len):
target_lang_token = params['lang_token'][target_lang]
# Tokenize and add special tokens
input_ids = tokenizer.encode(
text = str(target_lang_token) + str(text),
return_tensors = 'pt',
padding = 'max_length',
truncation = params['truncation'] ,
max_length = seq_len)
return input_ids[0]
def translate(
params: dict,
sentence: str,
source_lang: str,
target_lang: str
) -> str:
"""
Given a sentence and its source and target sentences, this translates the sentence
to the given target sentence.
"""
if source_lang!='' and target_lang!='':
inp = [sentence]
input_tokens = [encode_input_str_translate(params,text = inp[i],target_lang = target_lang,tokenizer = params['tokenizer'],seq_len =params['max_seq_len']).unsqueeze(0).to(params['device']) for i in range(len(inp))]
output = [params['model'].generate(input_ids, num_beams=params['num_beams'], num_return_sequences=1,max_length=params['max_seq_len'],min_length=params['min_seq_len']) for input_ids in input_tokens]
output = [params['tokenizer'].decode(out[0], skip_special_tokens=True) for out in tqdm(output)]
return output[0]
else:
return ''
if __name__=="__main__":
from argparse import ArgumentParser
import json
import os
parser = ArgumentParser('MMTArica Experiments')
parser.add_argument('-homepath', type=str, default=os.getcwd(),
help="Homepath directory. Where all experiments are saved and all \
necessary files/folders are saved. (default: current working directory)")
parser.add_argument('--prediction_path', type=str, default='./predictions',
help='directory path to save predictions (default: %(default)s)')
parser.add_argument('--model_name', type=str, default='mmt_translation',
help='Name of model (default: %(default)s)')
parser.add_argument('--bt_data_dir', type=str, default='btData',
help='Directory to save back-translation files (default: %(default)s)')
parser.add_argument('--parallel_dir', type=str, default='parallel',
help='name of directory where parallel corpora is saved')
parser.add_argument('--mono_dir', type=str, default='mono',
help='name of directory where monolingual files are saved (default: %(default)s)')
parser.add_argument('--log', type=str, default='train.log',
help='name of file to log experiments (default: %(default)s)')
parser.add_argument('--mono_data_limit', type=int, default=300,
help='limit of monolingual sentences to use for training (default: %(default)s)')
parser.add_argument('--mono_data_for_noise_limit', type=int, default=50,
help='limit of monolingual sentences to use for noise (default: %(default)s)')
parser.add_argument('--n_epochs', type=int, default=10,
help='number of training epochs (default: %(default)s)')
parser.add_argument('--n_bt_epochs', type=int, default=3,
help='number of backtranslation epochs (default: %(default)s)')
parser.add_argument('--batch_size', type=int, default=64,
help='batch size (default: %(default)s)')
parser.add_argument('--max_seq_len', type=int, default=50,
help='maximum length of sentence. All sentences beyond this length will be skipped. (default: %(default)s)')
parser.add_argument('--min_seq_len', type=int, default=2,
help='mnimum length of sentence. All sentences beyond this length will be skipped. (default: %(default)s)')
parser.add_argument('--checkpoint_freq', type=int, default=10_000,
help='maximum length of sentence. All sentences beyond this length will be skipped. (default: %(default)s)')
parser.add_argument('--lr', type=int, default=1e-4,
help='learning rate. (default: %(default)s)')
parser.add_argument('--print_freq', type=int, default=5_000,
help='frequency at which to print to log. (default: %(default)s)')
parser.add_argument('--use_multiprocessing', type=bool, default=False,
help='whether or not to use multiprocessing. (default: %(default)s)')
parser.add_argument('--num_pretrain_steps', type=int, default=20,
help='number of pretrain steps. (default: %(default)s)')
parser.add_argument('--num_backtranslation_steps', type=int, default=5,
help='number of pretrain steps. (default: %(default)s)')
parser.add_argument('--do_backtranslation', type=bool, default=True,
help='whether or not to do backtranslation during training. (default: %(default)s)')
parser.add_argument('--use_reconstruction', type=bool, default=True,
help='whether or not to use reconstruction during training. (default: %(default)s)')
parser.add_argument('--use_torch_data_parallel', type=bool, default=False,
help='whether or not to use torch data parallelism. (default: %(default)s)')
parser.add_argument('--gradient_accumulation_batch', type=int, default=4096//64,
help='batch size for gradient accumulation. (default: %(default)s)')
parser.add_argument('--num_beams', type=int, default=4,
help='number of beams to use for inference. (default: %(default)s)')
parser.add_argument('--patience', type=int, default=15_000_000,
help='patience for early stopping. (default: %(default)s)')
parser.add_argument('--drop_probability', type=float, default=0.2,
help='drop probability for reconstruction. (default: %(default)s)')
parser.add_argument('--dropout', type=float, default=0.1,
help='dropout probability. (default: %(default)s)')
parser.add_argument('--num_swaps', type=int, default=3,
help='number of word swaps to perform during reconstruction. (default: %(default)s)')
parser.add_argument('--verbose', type=bool, default=True,
help='whether or not to print information during experiments. (default: %(default)s)')
args = parser.parse_args()
main(args)
|