File size: 3,327 Bytes
3fb614b
 
42435e1
3fb614b
 
 
 
 
 
 
 
 
 
 
ec187f6
 
 
 
 
3fb614b
 
 
 
 
b289559
3fb614b
 
 
 
 
 
 
 
 
7bd3786
3fb614b
 
 
 
43021b7
1424ecd
3fb614b
 
 
 
 
43cbeb6
 
3fb614b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import gradio as gr
from transformers import pipeline
import torch

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)

instruct_pipeline = pipeline(model="databricks/dolly-v2-12b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
def generate(instruction): 
    response = instruct_pipeline(instruction)
    result = ""
    for word in response.split(" "):
        result += word + " "
        yield result


examples = [
    "Instead of making a peanut butter and jelly sandwich, what else could I combine peanut butter with in a sandwich? Give five ideas",
    "How do I make a campfire?",
    "Write me a tweet about the release of Dolly 2.0, a new LLM"
   
]


def process_example(args):
    for x in generate(args):
        pass
    return x

css = ".generating {visibility: hidden}"

with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
    with gr.Column():
        gr.Markdown(
            """ ## Dolly 2.0: World's First Truly Open Instruction-Tuned LLM
            Dolly 2.0 is a 12B parameter language model based on the EleutherAI pythia model family and fine-tuned exclusively on a new, high-quality human generated instruction following dataset, crowdsourced among Databricks employees. For more details, please refer to the [model card](https://huggingface.co/databricks/dolly-v2-12b)
            
            Type in the box below and click the button to generate answers to your most pressing questions!
            
      """
        )
        gr.HTML("<p>You can duplicate this Space to run it privately without a queue for shorter queue times  : <a style='display:inline-block' href='https://huggingface.co/spaces/RamAnanth1/Dolly-v2?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a> </p>")

        with gr.Row():
            with gr.Column(scale=3):
                instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input")

                with gr.Box():
                    gr.Markdown("**Answer**")
                    output = gr.Markdown(elem_id="q-output")
                submit = gr.Button("Generate", variant="primary")
                gr.Examples(
                    examples=examples,
                    inputs=[instruction],
                    cache_examples=False,
                    fn=process_example,
                    outputs=[output],
                )


    submit.click(generate, inputs=[instruction], outputs=[output])
    instruction.submit(generate, inputs=[instruction], outputs=[output])

demo.queue(concurrency_count=16).launch(debug=True)