File size: 1,206 Bytes
6647313 fedee4a 6647313 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import pandas as pd
import numpy as np
import sklearn as sn
from datasets import Dataset
df=pd.read_csv("https://huggingface.co/spaces/Ralmao/Anemia/raw/main/Flujo_anemia.csv",encoding='latin-1', on_bad_lines='skip')
dataset= Dataset.from_pandas(df)
X = df.drop(['Flujo_Type'], axis = 1)
y = df['Flujo_Type']
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.30,random_state=42)
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators=10)
clf = clf.fit(X_train, y_train)
clf
import gradio as gr
def predict_Flujotype(Hemoglobina):
x = np.array([Hemoglobina])
pred = clf.predict(x.reshape(1, -1))
if pred == 1:
return "Paciente con anemia empezar con un flujo de 220 e ir incrementando poco a poco hasta llegar a 300"
else:
return "Paciente sin anemia empezar con un flujo de 250 e ir incrementando poco a poco hasta llegar a 300"
Hemoglobina = gr.Number(label='Hemoglobina')
output = gr.Textbox(label='Flujo_Type')
app = gr.Interface(predict_Flujotype,inputs = [Hemoglobina],outputs=output, description= 'This is a Flujo Type Predictor')
app.launch(share=True) |