Spaces:
Sleeping
Sleeping
File size: 6,142 Bytes
ac901c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 20,
"id": "f73dec47",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['இது ஒரு சோதனை வாக்கியம். ', 'இது மற்றொரு நீண்ட வித்தியாசமான சோதனை வாக்கியமாகும். ', '9876543210 என்ற எண்ணுக்கு ஒரு எஸ்எம்எஸ் அனுப்பவும், 2023 அக்டோபர் 15 ஆம் தேதிக்குள் newemail123@xyz.com என்ற மின்னஞ்சல் முகவரிக்கு அனுப்பவும். ']\n"
]
}
],
"source": [
"\n",
"\n",
"import torch\n",
"from transformers import AutoModelForSeq2SeqLM, AutoTokenizer\n",
"\n",
"ip = IndicProcessor(inference=True)\n",
"tokenizer = AutoTokenizer.from_pretrained(\"ai4bharat/indictrans2-en-indic-dist-200M\", trust_remote_code=True)\n",
"model = AutoModelForSeq2SeqLM.from_pretrained(\"ai4bharat/indictrans2-en-indic-dist-200M\", trust_remote_code=True)\n",
"\n",
"sentences = [\n",
" \"This is a test sentence.\",\n",
" \"This is another longer different test sentence.\",\n",
" \"Please send an SMS to 9876543210 and an email on newemail123@xyz.com by 15th October, 2023.\",\n",
"]\n",
"\n",
"batch = ip.preprocess_batch(sentences, src_lang=\"eng_Latn\", tgt_lang=\"tam_Taml\", visualize=False) # set it to visualize=True to print a progress bar\n",
"batch = tokenizer(batch, padding=\"longest\", truncation=True, max_length=256, return_tensors=\"pt\")\n",
"\n",
"with torch.inference_mode():\n",
" outputs = model.generate(**batch, num_beams=5, num_return_sequences=1, max_length=256)\n",
"\n",
"with tokenizer.as_target_tokenizer():\n",
" # This scoping is absolutely necessary, as it will instruct the tokenizer to tokenize using the target vocabulary.\n",
" # Failure to use this scoping will result in gibberish/unexpected predictions as the output will be de-tokenized with the source vocabulary instead.\n",
" outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True)\n",
"\n",
"outputs = ip.postprocess_batch(outputs, lang=\"tam_Taml\")\n",
"print(outputs)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4ec49007",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "6fa9fc68",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"import torch\n",
"from transformers import AutoModelForSeq2SeqLM, AutoTokenizer\n",
"\n",
"# Add local IndicTransToolkit path if needed\n",
"sys.path.append(os.path.abspath(\"libs/IndicTransToolkit\"))\n",
"from IndicTransToolkit.processor import IndicProcessor\n",
"\n",
"# Load processor, tokenizer, and model\n",
"ip = IndicProcessor(inference=True)\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"ai4bharat/indictrans2-en-indic-dist-200M\", trust_remote_code=True)\n",
"model = AutoModelForSeq2SeqLM.from_pretrained(\"ai4bharat/indictrans2-en-indic-dist-200M\", trust_remote_code=True)\n",
"\n",
"def translate(text, target_lang):\n",
" if not text.strip():\n",
" return \"Please enter some text.\"\n",
"\n",
" # Preprocess\n",
" batch = ip.preprocess_batch([text], src_lang=\"eng_Latn\", tgt_lang=target_lang)\n",
" batch = tokenizer(batch, padding=\"longest\", truncation=True, max_length=256, return_tensors=\"pt\")\n",
"\n",
" # Inference\n",
" with torch.inference_mode():\n",
" outputs = model.generate(**batch, num_beams=5, max_length=256)\n",
"\n",
" # Postprocess\n",
" with tokenizer.as_target_tokenizer():\n",
" decoded = tokenizer.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True)\n",
"\n",
" return ip.postprocess_batch(decoded, lang=target_lang)[0]\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "c4ae654a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'வணக்கம். '"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"translate_text(\"hello\",\"tam_Taml\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "530f0925",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Translation: टाम् @टाम्ल नमस्कार, आप कैसे हैं? \n"
]
}
],
"source": [
"import requests\n",
"\n",
"url = \"http://localhost:7860/translate\"\n",
"\n",
"payload = {\n",
" \"text\": \"Hello, how are you?\",\n",
" \"target_lang\": \"tam_Taml\"\n",
"}\n",
"\n",
"headers = {\n",
" \"Content-Type\": \"application/json\"\n",
"}\n",
"\n",
"response = requests.post(url, json=payload, headers=headers)\n",
"\n",
"if response.status_code == 200:\n",
" print(\"Translation:\", response.json()[\"translation\"])\n",
"else:\n",
" print(\"Error:\", response.status_code, response.text)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "73eb9c61",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "indietrans2",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|