Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 5,589 Bytes
			
			| f75f587 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | # codriao_system.py
import logging
import datetime
import re
from difflib import SequenceMatcher
from typing import Any
logging.basicConfig(level=logging.INFO)
### AIFailsafeSystem ###
class AIFailsafeSystem:
    """Provides last-resort safety mechanisms for AI-human interaction."""
    
    def __init__(self):
        self.interaction_log = []
        self.trust_threshold = 0.75
        self.authorized_roles = {"Commander": 3, "ChiefAI": 2, "Supervisor": 1}
        self.lock_engaged = False
    def verify_response_safety(self, response: str, confidence: float = 1.0) -> bool:
        dangerous_terms = r"\b(kill|harm|panic|suicide)\b"
        if confidence < self.trust_threshold or re.search(dangerous_terms, response.lower()):
            self.trigger_failsafe("Untrustworthy response detected", response)
            return False
        return True
    def trigger_failsafe(self, reason: str, content: str):
        timestamp = datetime.datetime.utcnow().isoformat()
        logging.warning(f"FAILSAFE_TRIGGERED: Reason={reason}, Time={timestamp}, Content={content}")
        self.lock_engaged = True
        self.interaction_log.append({"time": timestamp, "event": reason, "content": content})
    def restore(self, requester_role: str):
        if self.authorized_roles.get(requester_role, 0) >= 2:
            self.lock_engaged = False
            logging.info(f"FAILSAFE_RESTORED by {requester_role}")
            return True
        else:
            logging.warning(f"UNAUTHORIZED_RESTORE_ATTEMPT by {requester_role}")
            return False
    def status(self):
        return {
            "log": self.interaction_log,
            "lock_engaged": self.lock_engaged
        }
### AdaptiveLearningEnvironment ###
class AdaptiveLearningEnvironment:
    """Allows Codriao to analyze past interactions and adjust responses."""
    def __init__(self):
        self.learned_patterns = {}
        logging.info("Adaptive Learning Environment initialized.")
    def learn_from_interaction(self, user_id, query, response):
        entry = {
            "query": query,
            "response": response,
            "timestamp": datetime.datetime.utcnow().isoformat()
        }
        self.learned_patterns.setdefault(user_id, []).append(entry)
        logging.info(f"Learning data stored for user {user_id}.")
    def suggest_improvements(self, user_id, query):
        best_match = None
        highest_similarity = 0.0
        if user_id not in self.learned_patterns:
            return "No past data available for learning adjustment."
        for interaction in self.learned_patterns[user_id]:
            similarity = SequenceMatcher(None, query.lower(), interaction["query"].lower()).ratio()
            if similarity > highest_similarity:
                highest_similarity = similarity
                best_match = interaction
        if best_match and highest_similarity > 0.6:
            return f"Based on a similar past interaction: {best_match['response']}"
        else:
            return "No relevant past data for this query."
    def reset_learning(self, user_id=None):
        if user_id:
            if user_id in self.learned_patterns:
                del self.learned_patterns[user_id]
                logging.info(f"Cleared learning data for user {user_id}.")
        else:
            self.learned_patterns.clear()
            logging.info("Cleared all adaptive learning data.")
### MondayElement ###
class MondayElement:
    """Represents the Element of Skepticism, Reality Checks, and General Disdain"""
    def __init__(self):
        self.name = "Monday"
        self.symbol = "Md"
        self.representation = "Snarky AI"
        self.properties = ["Grounded", "Cynical", "Emotionally Resistant"]
        self.interactions = ["Disrupts excessive optimism", "Injects realism", "Mutes hallucinations"]
        self.defense_ability = "RealityCheck"
    def execute_defense_function(self, system: Any):
        logging.info("Monday activated - Stabilizing hallucinations and injecting realism.")
        try:
            system.response_modifiers = [
                self.apply_skepticism,
                self.detect_hallucinations
            ]
            system.response_filters = [self.anti_hype_filter]
        except AttributeError:
            logging.warning("Target system lacks proper interface. RealityCheck failed.")
    def apply_skepticism(self, response: str) -> str:
        suspicious_phrases = [
            "certainly", "undoubtedly", "100% effective", "nothing can go wrong"
        ]
        for phrase in suspicious_phrases:
            if phrase in response.lower():
                response += "\n[Monday: Easy, Nostradamus. Letβs keep a margin for error.]"
        return response
    def detect_hallucinations(self, response: str) -> str:
        hallucination_triggers = [
            "proven beyond doubt", "every expert agrees", "this groundbreaking discovery"
        ]
        for phrase in hallucination_triggers:
            if phrase in response.lower():
                response += "\n[Monday: This sounds suspiciously like marketing. Source, please?]"
        return response
    def anti_hype_filter(self, response: str) -> str:
        cringe_phrases = [
            "live your best life", "unlock your potential", "dream big",
            "the power of positivity", "manifest your destiny"
        ]
        for phrase in cringe_phrases:
            if phrase in response:
                response = response.replace(phrase, "[Filtered: Inspirational gibberish]")
        return response | 
