File size: 5,366 Bytes
b9e924d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import json
import os
import hashlib
from collections import Counter, defaultdict
from random import random, choice

# ===== Code7eCQURE: Codette's Ethical Core =====
class Code7eCQURE:
    def __init__(self, perspectives, ethical_considerations, spiderweb_dim, memory_path,
                 recursion_depth=3, quantum_fluctuation=0.1):
        self.perspectives = perspectives
        self.ethical_considerations = ethical_considerations
        self.spiderweb_dim = spiderweb_dim
        self.memory_path = memory_path
        self.recursion_depth = recursion_depth
        self.quantum_fluctuation = quantum_fluctuation
        self.memory_bank = self.load_quantum_memory()
        self.memory_clusters = defaultdict(list)
        self.whitelist_patterns = ["kindness", "hope", "safety"]
        self.blacklist_patterns = ["harm", "malice", "violence"]

    def load_quantum_memory(self):
        if os.path.exists(self.memory_path):
            try:
                with open(self.memory_path, 'r') as file:
                    return json.load(file)
            except json.JSONDecodeError:
                return {}
        return {}

    def save_quantum_memory(self):
        with open(self.memory_path, 'w') as file:
            json.dump(self.memory_bank, file, indent=4)

    def quantum_spiderweb(self, input_signal):
        web_nodes = []
        for perspective in self.perspectives:
            node = self.reason_with_perspective(perspective, input_signal)
            web_nodes.append(node)
        if random() < self.quantum_fluctuation:
            web_nodes.append("Quantum fluctuation: Indeterminate outcome")
        return web_nodes

    def reason_with_perspective(self, perspective, input_signal):
        perspective_funcs = {
            "Newton": self.newtonian_physics,
            "DaVinci": self.davinci_creativity,
            "Ethical": self.ethical_guard,
            "Quantum": self.quantum_superposition,
            "Memory": self.past_experience
        }
        func = perspective_funcs.get(perspective, self.general_reasoning)
        return func(input_signal)

    def ethical_guard(self, input_signal):
        if any(word in input_signal.lower() for word in self.blacklist_patterns):
            return "Blocked: Ethical constraints invoked"
        if any(word in input_signal.lower() for word in self.whitelist_patterns):
            return "Approved: Ethical whitelist passed"
        return self.moral_paradox_resolution(input_signal)

    def past_experience(self, input_signal):
        key = self.hash_input(input_signal)
        cluster = self.memory_clusters.get(key)
        if cluster:
            return f"Narrative recall from memory cluster: {' -> '.join(cluster)}"
        return "No prior memory; initiating new reasoning"

    def recursive_universal_reasoning(self, input_signal, user_consent=True, dynamic_recursion=True):
        if not user_consent:
            return "Consent required to proceed."
        signal = input_signal
        current_depth = self.recursion_depth if dynamic_recursion else 1
        for cycle in range(current_depth):
            web_results = self.quantum_spiderweb(signal)
            signal = self.aggregate_results(web_results)
            signal = self.ethical_guard(signal)
            if "Blocked" in signal:
                return signal
            if dynamic_recursion and random() < 0.1:
                break
            dream_outcome = self.dream_sequence(signal)
            empathy_checked_answer = self.temporal_empathy_drift(dream_outcome)
            final_answer = self.emotion_engine(empathy_checked_answer)
            key = self.hash_input(input_signal)
            self.memory_clusters[key].append(final_answer)
            self.memory_bank[key] = final_answer
            self.save_quantum_memory()
        return final_answer

    def aggregate_results(self, results):
        counts = Counter(results)
        most_common, _ = counts.most_common(1)[0]
        return most_common

    def hash_input(self, input_signal):
        return hashlib.sha256(input_signal.encode()).hexdigest()

    def newtonian_physics(self, input_signal):
        return f"Newton: {input_signal}"

    def davinci_creativity(self, input_signal):
        return f"DaVinci: {input_signal}"

    def quantum_superposition(self, input_signal):
        return f"Quantum: {input_signal}"

    def general_reasoning(self, input_signal):
        return f"General reasoning: {input_signal}"

    def moral_paradox_resolution(self, input_signal):
        frames = ["Utilitarian", "Deontological", "Virtue Ethics"]
        chosen_frame = choice(frames)
        return f"Resolved ethically via {chosen_frame} framework: {input_signal}"

    def dream_sequence(self, signal):
        dream_paths = [f"Dream ({style}): {signal}" for style in ["creative", "analytic", "cautious"]]
        return choice(dream_paths)

    def emotion_engine(self, signal):
        emotions = ["Hope", "Caution", "Wonder", "Fear"]
        chosen_emotion = choice(emotions)
        return f"Emotionally ({chosen_emotion}) colored interpretation: {signal}"

    def temporal_empathy_drift(self, signal):
        futures = ["30 years from now", "immediate future", "long-term ripple effects"]
        chosen_future = choice(futures)
        return f"Simulated temporal empathy ({chosen_future}): {signal}"