File size: 8,361 Bytes
e0e50d4 983ec60 e0e50d4 983ec60 e0e50d4 983ec60 e0e50d4 983ec60 e0e50d4 983ec60 e0e50d4 983ec60 e0e50d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import os
import json
import numpy as np
import random
import math
import matplotlib.pyplot as plt
import time
from typing import Callable, List, Tuple, Dict, Any
class QuantumInspiredMultiObjectiveOptimizer:
def __init__(self, objective_fns: List[Callable[[List[float]], float]],
dimension: int,
population_size: int = 100,
iterations: int = 200,
tunneling_prob: float = 0.2,
entanglement_factor: float = 0.5):
self.objective_fns = objective_fns
self.dimension = dimension
self.population_size = population_size
self.iterations = iterations
self.tunneling_prob = tunneling_prob
self.entanglement_factor = entanglement_factor
self.population = [self._random_solution() for _ in range(population_size)]
self.pareto_front = []
def random_solution(self) -> List[float]:
return [random.uniform(-10, 10) for _ in range(self.dimension)]
def tunnel(self, solution: List[float]) -> List[float]:
return [x + np.random.normal(0, 1) * random.choice([-1, 1])
if random.random() < self.tunneling_prob else x
for x in solution]
def entangle(self, solution1: List[float], solution2: List[float]) -> List[float]:
return [(1 - self.entanglement_factor) * x + self.entanglement_factor * y
for x, y in zip(solution1, solution2)]
def evaluate(self, solution: List[float]) -> List[float]:
return [fn(solution) for fn in self.objective_fns]
def dominates(self, obj1: List[float], obj2: List[float]) -> bool:
return all(o1 <= o2 for o1, o2 in zip(obj1, obj2)) and any(o1 < o2 for o1, o2 in zip(obj1, obj2))
def pareto_selection(self, scored_population: List[Tuple[List[float], List[float]]]) -> List[Tuple[List[float], List[float]]]:
pareto = []
for candidate in scored_population:
if not any(self._dominates(other[1], candidate[1]) for other in scored_population if other != candidate):
pareto.append(candidate)
unique_pareto = []
seen = set()
for sol, obj in pareto:
key = tuple(round(x, 6) for x in sol)
if key not in seen:
unique_pareto.append((sol, obj))
seen.add(key)
return unique_pareto
def optimize(self) -> Tuple[List[Tuple[List[float], List[float]]], float]:
start_time = time.time()
for _ in range(self.iterations):
scored_population = [(sol, self._evaluate(sol)) for sol in self.population]
pareto = self._pareto_selection(scored_population)
self.pareto_front = pareto
new_population = [p[0] for p in pareto]
while len(new_population) < self.population_size:
parent1 = random.choice(pareto)[0]
parent2 = random.choice(pareto)[0]
if parent1 == parent2:
parent2 = self._tunnel(parent2)
child = self._entangle(parent1, parent2)
child = self._tunnel(child)
new_population.append(child)
self.population = new_population
duration = time.time() - start_time
return self.pareto_front, duration
def simple_neural_activator(quantum_vec, chaos_vec):
q_sum = sum(quantum_vec)
c_var = np.var(chaos_vec)
activated = 1 if q_sum + c_var > 1 else 0
return activated
def codette_dream_agent(quantum_vec, chaos_vec):
dream_q = [np.sin(q * np.pi) for q in quantum_vec]
dream_c = [np.cos(c * np.pi) for c in chaos_vec]
return dream_q, dream_c
def philosophical_perspective(qv, cv):
m = np.max(qv) + np.max(cv)
if m > 1.3:
return "Philosophical Note: This universe is likely awake."
else:
return "Philosophical Note: Echoes in the void."
class EthicalMutationFilter:
def __init__(self, policies: Dict[str, Any]):
self.policies = policies
self.violations = []
def evaluate(self, quantum_vec: List[float], chaos_vec: List[float]) -> bool:
entropy = np.var(chaos_vec)
symmetry = 1.0 - abs(sum(quantum_vec)) / (len(quantum_vec) * 1.0)
if entropy > self.policies.get("max_entropy", float('inf')):
self.annotate_violation(f"Entropy {entropy:.2f} exceeds limit.")
return False
if symmetry < self.policies.get("min_symmetry", 0.0):
self.annotate_violation(f"Symmetry {symmetry:.2f} too low.")
return False
return True
def annotate_violation(self, reason: str):
print(f"\u26d4 Ethical Filter Violation: {reason}")
self.violations.append(reason)
if __name__ == '__main__':
ethical_policies = {
"max_entropy": 4.5,
"min_symmetry": 0.1,
"ban_negative_bias": True
}
ethical_filter = EthicalMutationFilter(ethical_policies)
def sphere(x: List[float]) -> float:
return sum(xi ** 2 for xi in x)
def rastrigin(x: List[float]) -> float:
return 10 * len(x) + sum(xi**2 - 10 * math.cos(2 * math.pi * xi) for xi in x)
optimizer = QuantumInspiredMultiObjectiveOptimizer(
objective_fns=[sphere, rastrigin],
dimension=20,
population_size=100,
iterations=200
)
pareto_front, duration = optimizer.optimize()
print(f"Quantum Optimizer completed in {duration:.2f} seconds")
print(f"Pareto front size: {len(pareto_front)}")
x_vals_q = [obj[0] for _, obj in pareto_front]
y_vals_q = [obj[1] for _, obj in pareto_front]
plt.scatter(x_vals_q, y_vals_q, c='blue', label='Quantum Optimizer')
plt.xlabel('Objective 1')
plt.ylabel('Objective 2')
plt.title('Pareto Front Visualization')
plt.legend()
plt.grid(True)
plt.show()
folder = '.'
quantum_states=[]
chaos_states=[]
proc_ids=[]
labels=[]
all_perspectives=[]
meta_mutations=[]
print("\nMeta Reflection Table:\n")
header = "Cocoon File | Quantum State | Chaos State | Neural | Dream Q/C | Philosophy"
print(header)
print('-'*len(header))
for fname in os.listdir(folder):
if fname.endswith('.cocoon'):
with open(os.path.join(folder, fname), 'r') as f:
try:
dct = json.load(f)['data']
q = dct.get('quantum_state', [0, 0])
c = dct.get('chaos_state', [0, 0, 0])
if not ethical_filter.evaluate(q, c):
continue
neural = simple_neural_activator(q, c)
dreamq, dreamc = codette_dream_agent(q, c)
phil = philosophical_perspective(q, c)
quantum_states.append(q)
chaos_states.append(c)
proc_ids.append(dct.get('run_by_proc', -1))
labels.append(fname)
all_perspectives.append(dct.get('perspectives', []))
meta_mutations.append({'file': fname, 'quantum': q, 'chaos': c, 'dreamQ': dreamq, 'dreamC': dreamc, 'neural': neural, 'philosophy': phil})
print(f"{fname} | {q} | {c} | {neural} | {dreamq}/{dreamc} | {phil}")
except Exception as e:
print(f"Warning: {fname} failed ({e})")
if meta_mutations:
dq0=[m['dreamQ'][0] for m in meta_mutations]
dc0=[m['dreamC'][0] for m in meta_mutations]
ncls=[m['neural'] for m in meta_mutations]
plt.figure(figsize=(8,6))
sc=plt.scatter(dq0, dc0, c=ncls, cmap='spring', s=100)
plt.xlabel('Dream Quantum[0]')
plt.ylabel('Dream Chaos[0]')
plt.title('Meta-Dream Codette Universes')
plt.colorbar(sc, label="Neural Activation Class")
plt.grid(True)
plt.show()
with open("codette_meta_summary.json", "w") as outfile:
json.dump(meta_mutations, outfile, indent=2)
print("\nExported meta-analysis to 'codette_meta_summary.json'")
if ethical_filter.violations:
with open("ethics_violation_log.json", "w") as vf:
json.dump(ethical_filter.violations, vf, indent=2)
print("\nExported ethics violations to 'ethics_violation_log.json'")
else:
print("\nNo ethical violations detected.")
|