File size: 6,803 Bytes
559af1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import asyncio
import json
import logging
from typing import List, Dict, Any, Optional
from huggingface_hub import InferenceClient
from components.adaptive_learning import AdaptiveLearningEnvironment
from components.ai_driven_creativity import AIDrivenCreativity
from components.collaborative_ai import CollaborativeAI
from components.cultural_sensitivity import CulturalSensitivityEngine
from components.data_processing import AdvancedDataProcessor
from components.dynamic_learning import DynamicLearner
from components.ethical_governance import EthicalAIGovernance
from components.explainable_ai import ExplainableAI
from components.feedback_manager import ImprovedFeedbackManager
from components.multimodal_analyzer import MultimodalAnalyzer
from components.neuro_symbolic import NeuroSymbolicEngine
from components.quantum_optimizer import QuantumInspiredOptimizer
from components.real_time_data import RealTimeDataIntegrator
from components.self_improving_ai import SelfImprovingAI
from components.user_personalization import UserPersonalizer
from models.cognitive_engine import BroaderPerspectiveEngine
from models.elements import Element
from models.healing_system import SelfHealingSystem
from models.safety_system import SafetySystem
from models.user_profiles import UserProfile
from utils.database import Database
from utils.logger import logger

class AICore:
    """Enhanced AI Core System using open-source models"""
    def __init__(self, config_path: str = "config/ai_assistant_config.json"):
        # Load configuration
        self.config = self._load_config(config_path)
        
        # Initialize Hugging Face client
        self.inference_client = InferenceClient()
        
        # Initialize ML models configuration
        self.models = {
            'text-generation': "gpt2",
            'sentiment': "distilbert-base-uncased-finetuned-sst-2-english",
            'embeddings': "sentence-transformers/all-MiniLM-L6-v2"
        }
        
        # Initialize core components
        self.cognition = BroaderPerspectiveEngine()
        self.self_healing = SelfHealingSystem(self.config)
        self.safety_system = SafetySystem()
        self.elements = self._initialize_elements()
        
        # Initialize support systems
        self.database = Database()
        self.user_profiles = UserProfile(self.database)
        self.feedback_manager = ImprovedFeedbackManager(self.database)
        self.context_manager = AdaptiveLearningEnvironment()
        self.data_processor = AdvancedDataProcessor()
        self.dynamic_learner = DynamicLearner()

    def _load_config(self, config_path: str) -> Dict[str, Any]:
        """Load configuration from JSON file"""
        try:
            with open(config_path, 'r') as f:
                return json.load(f)
        except Exception as e:
            logger.error(f"Failed to load config: {e}")
            return {}

    def _initialize_elements(self) -> List[Element]:
        """Initialize system elements"""
        return [Element(name) for name in self.config.get('elements', [])]

    async def _generate_huggingface_response(self, query: str, task: str = 'text-generation') -> Any:
        """Generate a response using Hugging Face models"""
        try:
            if task == 'text-generation':
                response = self.inference_client.text_generation(
                    query,
                    model=self.models['text-generation'],
                    max_new_tokens=100
                )
                return response[0]["generated_text"]
            
            elif task == 'sentiment':
                response = self.inference_client.text_classification(
                    query,
                    model=self.models['sentiment']
                )
                return {
                    "score": response[0]["score"],
                    "label": response[0]["label"]
                }
            
            elif task == 'embeddings':
                response = self.inference_client.feature_extraction(
                    query,
                    model=self.models['embeddings']
                )
                return response
            
        except Exception as e:
            logger.error(f"Hugging Face API error ({task}): {str(e)}")
            return None

    async def process_input(self, text: str, context: Dict[str, Any] = None) -> Dict[str, Any]:
        """Process input text through multiple perspectives"""
        try:
            # Get sentiment analysis
            sentiment = await self._generate_huggingface_response(text, 'sentiment')
            
            # Generate perspectives using different models
            perspectives = []
            
            # Add text generation perspective
            generated_text = await self._generate_huggingface_response(text)
            if generated_text:
                perspectives.append({
                    "type": "text-generation",
                    "content": generated_text
                })
            
            # Get embeddings for semantic understanding
            embeddings = await self._generate_huggingface_response(text, 'embeddings')
            if embeddings is not None:
                perspectives.append({
                    "type": "semantic",
                    "content": "Semantic analysis complete"
                })
            
            # Process through cognitive engine
            cognitive_result = self.cognition.process(text, context)
            perspectives.append({
                "type": "cognitive",
                "content": cognitive_result
            })
            
            # Generate final response
            final_response = await self._generate_huggingface_response(
                text + "\n\nContext: " + str(perspectives)
            )
            
            # Get explanation from the ethical governance system
            explanation = "Response generated using ethical AI principles"
            
            return {
                "insights": perspectives,
                "response": final_response,
                "sentiment": sentiment,
                "explanation": explanation,
                "status": "success"
            }
            
        except Exception as e:
            logger.error(f"Error in process_input: {str(e)}")
            return {
                "error": str(e),
                "status": "error"
            }

    async def shutdown(self):
        """Cleanup resources"""
        try:
            await self.database.close()
        except Exception as e:
            logger.error(f"Error during shutdown: {e}")