Spaces:
Sleeping
Sleeping
File size: 11,778 Bytes
32661ae 641e943 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import warnings
from functions.models import models_dict
warnings.filterwarnings('ignore', category=UserWarning, module='tensorflow')
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
import logging
logging.getLogger('absl').setLevel(logging.ERROR)
from moviepy.editor import VideoFileClip
import pandas as pd
from tqdm import tqdm
import time
import json
import cv2
import dlib
from collections import Counter
import statistics
import shutil
import asyncio
import traceback
from functions.valence_arousal import va_predict
from functions.speech import speech_predict
from functions.eye_track import Facetrack, eye_track_predict
from functions.fer import extract_face,fer_predict,plot_graph,filter
# from app.utils.session import send_analytics, send_individual_analytics_files, send_combined_analytics_files, send_error
# from app.utils.socket import ConnectionManager
from typing import Callable
session_data={}
dnn_net=models_dict['face'][0]
predictor=models_dict['face'][1]
speech_model=models_dict['speech']
valence_dict_path=models_dict['vad'][0]
arousal_dict_path=models_dict['vad'][1]
dominance_dict_path=models_dict['vad'][2]
valence_arousal_model=models_dict['valence_fer'][1]
val_ar_feat_model=models_dict['valence_fer'][0]
fer_model=models_dict['fer']
def analyze_live_video(video_path: str, uid: str, user_id: str, count: int, final: bool, log: Callable[[str], None]):
try:
#initilalizing lists
global session_data
if uid not in session_data:
session_data[uid] = {
"vcount":[],
"duration":[],
"eye": [],
"fer": [],
"valence":[],
"arousal":[],
"stress":[],
"blinks": [],
"class_wise_frame_counts": [],
"speech_emotions": [],
"speech_data":[],
"word_weights_list": []
}
print(f"UID: {uid}, User ID: {user_id}, Count: {count}, Final: {final}, Video: {video_path}")
log(f"Analyzing video for question - {count}")
output_dir = os.path.join('output',str(uid))
print(output_dir)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Wait for previous files to be written if final
if final and count > 1:
for i in range(1, count):
previous_file_name = os.path.join(output_dir, f"{i}.json")
print(previous_file_name)
while not os.path.exists(previous_file_name):
time.sleep(1)
video_clip = VideoFileClip(video_path)
video_clip = video_clip.set_fps(30)
print("Duration: ", video_clip.duration)
session_data[uid]['vcount'].append(count)
session_data[uid]['duration'].append(video_clip.duration)
fps = video_clip.fps
audio = video_clip.audio
audio_path = os.path.join(output_dir,'extracted_audio.wav')
audio.write_audiofile(audio_path)
video_frames = [frame for frame in video_clip.iter_frames()]
#Face extraction
print("extracting faces")
faces=[extract_face(frame,dnn_net,predictor) for frame in tqdm(video_frames)]
print(f'{len([face for face in faces if face is not None])} faces found.')
##EYE TRACKING
fc=Facetrack()
log(f"Extracting eye features for question - {count}")
eye_preds,blink_durations,total_blinks=eye_track_predict(fc,faces,fps)
print(len(eye_preds))
print("total_blinks- ",total_blinks)
session_data[uid]['eye'].append(eye_preds)
session_data[uid]['blinks'].append(blink_durations)
#FACIAL EXPRESSION RECOGNITION
log(f"Extracting facial features for question - {count}")
fer_emotions,class_wise_frame_count,em_tensors=fer_predict(faces,fps,fer_model)
print("face emotions",len(fer_emotions))
session_data[uid]['fer'].append(fer_emotions)
session_data[uid]['class_wise_frame_counts'].append(class_wise_frame_count)
#VALENCE AROUSAL STRESS
valence_list,arousal_list,stress_list=va_predict(valence_arousal_model,val_ar_feat_model,faces,list(em_tensors))
session_data[uid]['valence'].append(valence_list)
session_data[uid]['arousal'].append(arousal_list)
session_data[uid]['stress'].append(stress_list)
log(f"Extracting speech features for question - {count}")
emotions,major_emotion,word=speech_predict(audio_path,speech_model,valence_dict_path,arousal_dict_path,dominance_dict_path)
session_data[uid]['speech_emotions'].append(emotions)
session_data[uid]['word_weights_list'].append(word['word_weights'])
session_data[uid]['speech_data'].append([float(word['average_pause_length'] if word and word['average_pause_length'] else 0),float(word['articulation_rate'] if word and word['articulation_rate'] else 0),float(word['speaking_rate'] if word and word['speaking_rate'] else 0)])
log(f"Generating the metadata for question - {count}")
# Create Meta Data
meta_data={}
try:
avg_blink_duration= float(sum(blink_durations)/(len(blink_durations)))
except:
avg_blink_duration=0
meta_data['vcount']=count
meta_data['eye_emotion_recognition'] = {
"blink_durations": blink_durations,
"avg_blink_duration":avg_blink_duration,
"total_blinks": total_blinks,
"duration":video_clip.duration
}
meta_data['facial_emotion_recognition'] = {
"class_wise_frame_count": class_wise_frame_count,
}
meta_data['speech_emotion_recognition'] = {
'major_emotion':str(major_emotion),
'pause_length':float(word['average_pause_length']),
'articulation_rate':float(word['articulation_rate']),
'speaking_rate':float(word['speaking_rate']),
'word_weights':word['word_weights']
}
file_path=audio_path
if os.path.exists(file_path):
os.remove(file_path)
print(f"{file_path} deleted")
file_path='segment.wav'
if os.path.exists(file_path):
os.remove(file_path)
print(f"{file_path} deleted")
print("Individual: ", meta_data)
if not final:
print("Not final Executing")
log(f"Saving analytics for question - {count}")
# send_analytics(valence_plot, arousal_plot,{
# "uid": uid,
# "user_id": user_id,
# "individual": meta_data,
# "count": count
# })
print("Sent analytics")
# send_individual_analytics_files(uid, output_dir, count)
dummy_file_path = os.path.join(output_dir, f'{count}.json')
print("Writing dummy file: ", dummy_file_path)
with open(dummy_file_path, 'w') as dummy_file:
json.dump({"status": "completed"}, dummy_file)
return
# Process combined
log(f"Processing gathered data for final output")
vcount=session_data[uid]['vcount']
sorted_indices = sorted(range(len(vcount)), key=lambda i: vcount[i])
for key in session_data[uid]:
# Only sort lists that are the same length as vcount
if len(session_data[uid][key]) == len(vcount):
session_data[uid][key] = [session_data[uid][key][i] for i in sorted_indices]
videos=len(session_data[uid]['vcount'])
#INDIV PLOT SAVING
combined_speech=[]
combined_valence=[]
combined_arousal=[]
combined_stress=[]
combined_fer=[]
combined_eye=[]
vid_index=[]
combined_speech=[]
combined_blinks=[]
for i in range(videos):
for j in range(len(session_data[uid]['speech_emotions'][i])):
vid_index.append(i+1)
combined_speech+=session_data[uid]['speech_emotions'][i]
timestamps=[i*3 for i in range(len(combined_speech))]
df = pd.DataFrame({
'timestamps':timestamps,
'video_index':vid_index,
'speech_emotion':combined_speech
})
df.to_csv(os.path.join(output_dir,'combined_speech.csv'), index=False)
vid_index=[]
for i in range(videos):
timestamps=[j/30 for j in range(len(session_data[uid]['valence'][i]))]
for j in range(len(timestamps)):
vid_index.append(i+1)
folder_path=os.path.join(output_dir,f"{session_data[uid]['vcount'][i]}")
os.makedirs(folder_path, exist_ok=True)
plot_graph(timestamps,session_data[uid]['valence'][i],'valence',os.path.join(folder_path,'valence.png'))
plot_graph(timestamps,session_data[uid]['arousal'][i],'arousal',os.path.join(folder_path,'arousal.png'))
plot_graph(timestamps,session_data[uid]['stress'][i],'stress',os.path.join(folder_path,'stress.png'))
combined_arousal+=session_data[uid]['arousal'][i]
combined_valence+=session_data[uid]['valence'][i]
combined_stress+=session_data[uid]['stress'][i]
combined_fer+=session_data[uid]['fer'][i]
combined_blinks+=session_data[uid]['blinks'][i]
# combined_class_wise_frame_count+=session_data[uid]['class_wise_frame_counts'][i]
try:
max_value=max([x for x in combined_eye if isinstance(x, (int, float))])
except:
max_value=0
session_data[uid]['eye'][i]=[x + max_value if isinstance(x, (int, float)) else x for x in session_data[uid]['eye'][i]]
combined_eye+=session_data[uid]['eye'][i]
timestamps=[i/fps for i in range(len(combined_arousal))]
plot_graph(timestamps,combined_valence,'valence',os.path.join(output_dir,'valence.png'))
plot_graph(timestamps,combined_arousal,'arousal',os.path.join(output_dir,'arousal.png'))
plot_graph(timestamps,combined_stress,'stress',os.path.join(output_dir,'stress.png'))
print(len(timestamps),len(vid_index),len(combined_fer),len(combined_valence),len(combined_arousal),len(combined_stress),len(combined_eye))
df = pd.DataFrame({
'timestamps':timestamps,
'video_index': vid_index, # Add a column for video index
'fer': combined_fer,
'valence': combined_valence,
'arousal': combined_arousal,
'stress': combined_stress,
'eye': combined_eye,
})
df.to_csv(os.path.join(output_dir,'combined_data.csv'), index=False)
#generate metadata for Combined
comb_meta_data={}
try:
avg_blink_duration= float(sum(combined_blinks)/(len(combined_blinks)))
except:
avg_blink_duration=0
total_blinks=max([x for x in combined_eye if isinstance(x, (int, float))])
comb_meta_data['eye_emotion_recognition'] = {
"avg_blink_duration":avg_blink_duration,
"total_blinks": total_blinks,
}
dict_list = session_data[uid]['class_wise_frame_counts']
result = {}
for d in dict_list:
for key,value in d.items():
result[key]=result.get(key,0)+value
comb_meta_data['facial_emotion_recognition'] = {
"class_wise_frame_count": result,
}
combined_weights = Counter()
for word_weight in session_data[uid]['word_weights_list']:
combined_weights.update(word_weight)
combined_weights_dict = dict(combined_weights)
print(combined_weights_dict)
comb_meta_data['speech_emotion_recognition'] = {
'major_emotion':str(major_emotion),
'pause_length':statistics.mean([row[0] for row in session_data[uid]['speech_data']]),
'articulation_rate':statistics.mean([row[1] for row in session_data[uid]['speech_data']]),
'speaking_rate':statistics.mean([row[2] for row in session_data[uid]['speech_data']]),
'word_weights':combined_weights_dict
}
with open(os.path.join(output_dir,'combined.json'), 'w') as json_file:
json.dump(comb_meta_data, json_file)
log(f"Saving analytics for final output")
# send_analytics(valence_plot, arousal_plot,{
# "uid": uid,
# "user_id": user_id,
# "individual": meta_data,
# "combined": combined_meta_data,
# "count": count
# })
# send_individual_analytics_files(uid, output_dir, count)
# send_combined_analytics_files(uid, output_dir)
# shutil.rmtree(output_dir)
# print(f"Deleted output directory: {output_dir}")
except Exception as e:
print("Error analyzing video...: ", e)
error_trace = traceback.format_exc()
print("Error Trace: ", error_trace)
log(f"Error analyzing video for question - {count}")
# send_error(uid, {
# "message": str(e),
# "trace": error_trace
# })
shutil.rmtree('output')
print(f"Deleted output directory: {output_dir}")
# st=time.time()
# # analyze_live_video(video_path, uid, user_id, count, final, log)
# analyze_live_video('videos/s2.webm', 1,1,1,False,print)
# analyze_live_video('videos/a4.webm', 1,1,2,True,print)
# analyze_live_video('videos/s2.webm', 1,1,2,True,print)
# print("time taken - ",time.time()-st) |