Spaces:
Sleeping
Sleeping
File size: 1,354 Bytes
d381b23 b98bf6d d381b23 b98bf6d d381b23 b98bf6d d381b23 b98bf6d d381b23 b98bf6d d381b23 4bdfa1f b98bf6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
from transformers import BertTokenizer, BertForSequenceClassification
import torch
# Function to load model and tokenizer
def load_model():
tokenizer = BertTokenizer.from_pretrained("Minej/bert-base-personality")
model = BertForSequenceClassification.from_pretrained("Minej/bert-base-personality")
return tokenizer, model
# Load the model and tokenizer
tokenizer, model = load_model()
# Function to predict personality traits
def personality_detection(text):
inputs = tokenizer(text, truncation=True, padding=True, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1).squeeze().numpy()
label_names = ['Extroversion', 'Neuroticism', 'Agreeableness', 'Conscientiousness', 'Openness']
result = {label_names[i]: predictions[i] for i in range(len(label_names))}
return result
# Create the Gradio interface
interface = gr.Interface(
fn=personality_detection,
inputs=gr.Textbox(lines=2, placeholder="Enter a sentence here..."),
outputs=gr.Label(),
title="Personality Analyzer",
description="Enter a sentence and get a prediction of personality traits."
)
# Launch the Gradio app on a specific port
interface.launch(server_port=7861) # You can change 7861 to another port if necessary
|