File size: 945 Bytes
4c74e3d
 
b7821ac
4c74e3d
 
 
 
ac05110
 
 
 
 
4c74e3d
d171858
 
 
7afbbaa
d171858
e168710
bf2a15f
ae6dd56
 
d171858
683f794
d171858
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from langchain_core.messages import AIMessage

MODEL_REPO = "Rahul-8799/software_architect_command_r"

tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_REPO,
    torch_dtype=torch.float16,
    device_map="auto"
)

def run(state: dict) -> dict:
    """Software Architect designs overall system architecture"""
    messages = state["messages"]
    prompt = messages[-1].content

    input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
    output_ids = model.generate(input_ids, max_new_tokens=3000)
    output = tokenizer.decode(output_ids[0], skip_special_tokens=True)

    return {
        "messages": [AIMessage(content=output)],
        "chat_log": state["chat_log"] + [{"role": "Software Architect", "content": output}],
        "arch_output": output,
    }